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) This experiment investigates the performance of an adgptive
tedmique far the classification of the following types of digitally
mohhilated signals: binary amplitude shift keying (B2SK) , binary phase
shift keying (BPSK), quatemary phase shift keying (QPSK) , and
binary frequency shift keying (BFSK).

The feature extraction process uses the mean and variance of the
signal, and magnitudes and locatias of the maxima in the spectnum of
the signal, the spectrum of the signal squared, and the spectrum of the
signal raised to the faurth power. The process of raising the signal
to the seond and faurth power and searching for narrowband energy near
twice and faur times the intemmediae frequency is shomn to provide
useful information far the classification of BPSK and QPSK signals.

A computer simulatin is performed to measure the properties of
the classifier. First, the classifier is trained with a set of
feature vectors calaulated fran 20 dB SNR signals. The Least Mean
Squares (IMS) algorithm is the adaptive procedure used to generate
the weight vectors used to form the linear decision functions. fter
training, these weight vectors are used to classify unknown sidnals
fran the signal set. ne signal fram each class at 20, 15, 10 le|
S dB SNRs are presented to the classifier. This method corre
classified all the signals cansidered during this experiment. However,
the conclusiveness of the results are limited due to the amall mmber
of trials perfamed. The most important result is the discovery of
features useful for the identification of M-ary PSK signals. Further
study is recammended in this area.
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Preface

This thesis presents a method for the automatic identification of certain classes of

digitally modulated signals by use of linear decision functions generated by the LMS

algorithm. Although the set of unknown signals tested is limited, a new feature for the

identification of phase shift keyed signals has been found.

Certainly, this thesis is the result of the efforts of many people. First of all, I would

like to acknowledge the support of my thesis advisor, Major Glenn E. Prescott. Many

interesting discussions were held during the course of this project; I am particularly grateful

that he introduced me to the field of adaptive signal processing. The second person who

requires acknowledgement is Mr. Vic Hanus of the Foreign Technology Division. He was

the source of a number of useful suggestions concerning the application of the LMS

algorithm. I would like to specially thank Mr. Rich Abrams of Antioch University for his
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assistance in producing the final draft of this thesis.
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Also, I need to thank my family. Without the help of my parents and mother-in-law

and father-in-law, this thesis would not have been written. They all provided support in
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ways too numerous to mention here. Finally, I must thank and congratulate my wife,
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Terese. She managed to care for me and our son, Patrick, and get us through the

construction of a house while most of my time was devoted to school work.

Martin P. DeSimio
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Abstract

This experiment investigates the performance of an adaptive technique for the
classification of the following types of digitally modulated signals: binary amplitude shift
keying (BASK), binary phase shift keying (BPSK), quaternary phase shift keying (QPSK),
and binary frequency shift keying (BFSK).

The feature extraction process uses the mean and variance of the signal, and
magnitudes and locations of the maxima in the spectrum of the signal, the specirum of the
signal squared, and the spectrum of the signal raised to the fourth power. The process of
raising the signal to the second and fourth power and searching for narrowband energy near
twice and four times the intermediate frequency is shown to provide useful information for
the classification of BPSK and QPSK signals.

A computer simulation is performed to measure the properties of the classifier.
First, the classifier is trained with a set of feature vectors calculated from 20 dB SNR
signals. The Least Mean Squares (LMS) algorithm is the adaptive procedure used to
generate the weight vectors used to form the linear decision functions. After training, these
weight vectors are used to classify unknown signals from the signal set. One signal from
each class at 20, 15, 10, and 5 dB SNRs are presented to the classifier. This method
correctly identifies all the signals considered during this experiment. However, the
conclusiveness of the results are limited due to the small number of trials performed. The
most important result is the discovery of features useful for the identification of M-ary PSK

signals. Further study is recommended in this area.
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AUTOMATIC CLASSIFICATION OF

3 @ DIGITALLY MODULATED SIGNALS :
W 1. Introduction '

.-~
.

Background )

Consistent identification of the modulation type of an unknown signals is not possible

-
e
>y

-

by human operators (Liedtke,1984:311). Applications such as radio spectrum surveillance

and electronic warfare require automatic identification of the modulation type of the received

o~ .
-

signal (Chan and others,1985:22.5.1; Jondral,1985:177). The first application requires

D)
3
4 information on modulation type in order to demodulate the signal. The second application \
i.: uses the information on modulation type in order to choose the appropriate electronic warfare 1
t
" strategy. t
Y4 4
u" ¥
L 4591 a
1)
; ’ Problem and Scope
A )
' The purpose of the automatic signal classification method is to determine the :
)
’? modulation type of unknown signals. The set of signals to be considered for identification of
:: modulation type are limited to forms of digital modulation. Specifically, the signals are
|‘ B
;: binary amplitude shift keying (BASK), binary phase shift keying (BPSK), quaternary phase E
4 t
) shift keying (QPSK), and binary frequency shift keying (BFSK). J
o The performance of the automatic classification procedure will be investigated by ‘
‘ simulations with computer generated signals and noise. This procedure does not attempt to '
§ demodulate the unknown signals and is limited to a proof of concept of the classification ‘
¥ method. \
i
\' Q
¥ \
o
S ’
]
,;o
L
g 1-1 :.
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@ Summary of Current Knowledge
A review of unclassified literature from 1982 to 1987 reveals three references

concerning the identification of the modulation type of signals. Two of the papers present

similar approaches to the identification problem. The earlier of the two papers, which was

written by Liedtke, provides the framework for a later paper by Jondral which is an

extension of Liedtke's work. Liedtke's paper does not present a theoretical development of

the statistics involved with the decision functions. However, Jondral uses an adaptive

procedure which is trained by a learning process and is shown to be a form of classifier

which minimizes the mean squared error. A third paper by Chan and others presents an

approach for the identification of the modulation type of signals based upon the statistical

properties of their envelopes. The three papers are summarized below.

Summary of Liedtke's Paper. The paper by Liedtke describes a method for the

automatic classification of digitally modulated signals. First the signals are received by a

conventional receiver and then digitized. A concentric finite impulse response (FIR)

filterbank is used to band limit the digitized signal to N different bandwidths about the

intermediate frequency of the receiver. The concentric FIR filterbank has N parallel outputs

corresponding to the N different bandwidths.

The next stage of the processing is demodulation by what Liedtke calls a universal

demodulator. "The name 'universal demodulator' indicates that all the modulation types of

interest can be demodulated without specifically adjusting the demodulator parameters”

(Liedtke,1984:313). The universal demodulator is realized by using many demodulators or

by using only one demodulator in a time division multiplexed manner. The next step of the

classification method is to calculate parameters of the unknown signal.

Feature extraction is the process of calculating attributes from input data (Tou and

Gonzalez,1974:12). The features calculated by Liedtke are the amplitude, instantaneous

frequency, and phase. The variances of the amplitude and instantaneous frequency data are

N Q@. calculated and histograms of the amplitude, instantaneous frequency and phase information

1-2
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are also computed.

The histograms are processed further by weighting functions. There is a specific
weighting function for each modulation type of interest . Each weighting function has the
property of producing a numerical result which is large when applied to the histogram from
the type of modulation for which the weighting function is designed; the result is small when
applied to histograms derived from other types of modulation. The next step in the
classification method is to decide what type of modulation was used on the signal based upon
the features which have been calculated.

Decision functions operate upon the processed features to decide which type of signal
the features describe. The decision functions of Liedtke are based upon Boolean type
equations. For example, if all of the following conditions are satisfied for the input data,
BFSK is chosen as the type of modulation used on the input signal: the result of processing
the frequency histogram of the data with the weighting function corresponding to BFSK is
greater than the threshold for the processed frequency histogram; the variance of the
instantaneous frequency is greater than its threshold; the variance of the amplitude is less
than its threshold.

Liedtke uses the notation of Boolean algebra to simplify the expression of his decision
functions. In his notation, the preceeding decision function is represented in equation (1-1)

as

[FHI > TFHI] .AND. [FVAR > TFVAR] .AND. [AVAR < TAVAR] =TRUE (1-1)

where
FHI = result of processing frequency histogram with the
weighting function for BFSK
TFHI = threshold on processing frequency histogram with the
weighting function for BFSK
FVAR = variance of the instantaneous frequency
TFVAR = threshold on the variance of the instantaneous frequency

1-3
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AVAR

%)
. % TAVAR

variance of the amplitude

threshold on the variance of the amplitude

3 Similar decision functions are given for the other modulation types of interest. Liedtke

:.: achieves good performance for the identification of the following types of modulation: X
BASK, BFSK, BPSK, QPSK, quaternary FSK and 8-PSK.

‘: Summary of Jondral's Paper. The paper by Jondral describes a signal classification ;
j method very similar to that of Liedtke. The preprocessing of the signals are identical in both '
. papers. The difference between the papers is that Jondral uses an adaptive process to |
::‘, develop his decision functions which are optimum in a mean squared error sense

:::' (Jondral,1985:184). Liedtke formulates his decision functions intuitively as boolean :
: equations (Liedtke,1983). Jondral achieves good performance from his classification

‘i‘: method for the following types of modulation: BASK, BFSK, BPSK2, quaternary FSK, :
:, amplitude modulation with large carrier (AM-LC) and single sideband amplitude modulation f
k ‘:-5 with suppressed carrier (SSB-SC).

E: Summary of Chan's Paper, The paper by Chan and others describes a method to ]
‘:Ei determine the modulation type of a signal based upon the characteristics of its envelope.
; Note that this is just one of the features used by Liedtke and Jondral. However, the work of

:z Chan and others show that the ratio of the variance of the envelope to the square of its mean

:: can be used as a feature to reliably separate different types of modulation (Chan and

2 others,1985). This ratio is derived as a function of carrier to noise ratio for the signals of

}:' interest and thresholds are calculated for the determination of modulation type. This scheme

;i was shown to be effective for the separation of AM-LC, double sideband suppressed carrier

AM, SSB, and FM. However, this method is unable to separate between classes of signals !
with constant envelopes. That is, it can not distinguish between classes of angle modulated !
signals since this type of modulation produces waveforms with constant envelopes (Chan

< and others,1985).
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Assumptions

Several assumptions are made concerning the signals and the environment observed by

the classification procedure presented in this thesis. The received signal is assumed to be
corrupted by additive white gaussian noise. The signal which is to be processed is assumed
to be at the output of the IF amplifier of a receiver. The IF is taken to be 100 kHz. Itis also
assumed that only the unknown signal plus noise is present within the passband of the IF
amplifier. The message signal is assumed to have independent and equally likely symbols.

The assumptions mentioned above result in a mathematically tractable thesis problem
which is readily implemented on a computer while simulating some of the conditions

encountered in typical conditions.

Standards

The performance of the procedure developed in this thesis will be judged as
successful or unsuccessful based upon the results of the simulation. Comparisons with the
efforts of the work presented in the summary of current knowledge are inconclusive due to
the limited number of samples classified by the developed method. However, results will be
tabulated for the performance of the developed procedure versus signal to noise ratio and

modulation type.

Approach

The approach to the signal classification problem is to simulate the signals and
classification procedure in software. This method allows the precise control of the operating
environment, signal and classifier parameters may be easily changed, and no specialized
equipment is required.

The software is in Fortran and was written solely by the author with the exception of a
fast Fourier transform routine, which is due to Ahmed and Natarajan (Ahmed and

Natarajan,1983:160-161).
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f . Comparison to Existing Methods. The approach to the classification problem will be a
: % combination of the procedures of Liedtke, Chan and others, and Jondral. The method
K described in this thesis uses the mean and the variance of the signal envelope as two features.
The decision functions used are developed from an adaptive algorithm. This is essentialy the
same approach to the development of decision functions used by Jondral. The preprocessing
R for feature extraction is different from all of the above authors.
! The methods of Liedtke and Jondral use phase histograms to determine the level of
phase modulation of PSK signals, while the procedure due to Chan and others can not
K distinguish between classes of angle modulated signals. The automatic classifier described in
this paper uses new methods to determine the level of modulation for PSK signals.

The original contributions of this effort are the application of new techniques for the

separation of different levels of PSK signals. The separation of different levels of PSK

'

é refers to the determination of whether a phase shift keyed signal is BPSK or QPSK.

%

§ (15 General Structure of Classification Procedure. The classification procedure consists of
2 three steps. The first step is to calculate features from signals which are of known

‘: modulation type. The features are used as elements in a feature vector which are used as

.: inputs to the next step. In the second step, these feature vectors are used as training vectors
E‘ in an adaptive algorithm which produces weight vectors for each class of signals. After

:E training, the third step is performed. Here, classification of unknown signals is performed

by multiplying the weight vectors by the feature vector obtained from the unknown signal.

:; The results of these multiplications are decision functions. These decision functions are such
4 that the largest output occurs when a signal from the class for which it has been optimized is
applied.

N Feature Extraction, The features used in the classification method are derived from the
envelope of the signal and from the spectra of the signal, the signal squared and the signal

" quadrupled.

@ The mean and variance of the envelope are calculated and used as elements of the

KX 1-6
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feature vector. These features are intended to provide information necessary to classify

amplitude shift keyed signals.

The magnitude of the Fourier transform of the signal is searched for energy of the

chosen bandwidth using a correlation process which is described in the Theory chapter. The

features obtained from this correlation are the magnitude and spectral location of two largest

peaks of the correlation waveform. These elements of the feature vector are intended to

provide infomation related to frequency shift keyed signals.

The magnitude of the Fourier transforms of the signal squared and the signal

quadrupled are searched for narrowband energy near twice and four times the frequency

obtained from the correlation of the spectrum of the original signal. The modulation from an

M-ary PSK signal is removed when it is multiplied by itself M times (Proakis,1983:197).

The result of this operation is an unmodulated sinusoid at M times the original carrier

frequency.

Theoretically, the bandwidth of a sinusoid approaches zero as the observation time

becomes infinite (Stremler,1982:87). In practice, the bandwith will be small, but zero

bandwidth will not occur due to finite observation time and other effects. However, when a

signal other than M-ary PSK is multiplied by itself M times, its bandwidth will be increased

by a factor of M (Gagliardi,1978:63). The property of M-ary PSK signals producing a

I sinusoid when raised to the Mth power is exploited in this classification procedure. Since this

4 property is unique to PSK signals, it is expected to be a useful feature for the separation of

BPSK and QPSK from each other and other classes of signals.

Development of Decision Functions, The decision functions used in this experiment
are generated by an adaptive technique known as the Least Mean Squares (LMS) algorithm

(Widrow and Stearns,1985: Ch 6). It accepts feature vectors from known classes of signals.

Based upon these inputs, the weights in an adaptive linear combiner, as shown in Figure

1-1, change so as to produce the largest value when the input signal is from the class to

_@, which the weights are matched.
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The structure of the classifier of this paper uses an adaptive linear combiner for each

2
- e -

class of signal. The class decision for an unknown feature vector is made by choosing the

largest output from the set of adaptive linear combiners. The structure of the classifier is

shown in Figure 1-2.

pearear—ar = K.

4
Weight <
vector A

x

- -

Input
Festure { X W
Vector

2w e

- e

Figure 1-1. Adaptive Linear Combiner (Widrow and Stearns,1985:16)

o S

umm

This chapter has provided an overview of existing methods for the classification of the

modulation type of signals. A brief presentation of the proposed method was also given.

The existing methods are explored in greater depth in the next chapter and the proposed

method is explained in the Theory chapter.
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II. Literature Review

Back n

The problem of identification of modulation type for digitally modulated signals is of
interest in spectrum surveillance and electronic warfare applications. Communications
jamming is one important aspect of electronic warfare. In the electronic warfare case,
knowledge of the type of modulation used by an enemy emitter would allow an appropriate
choice of a jamming signal (Golden,1983:12).

As stated in the first chapter, a review of the unclassified literature of the past five
years resulted in the discovery of three papers concerned with the identification of the
modulation type of unknown signals. The first paper to be considered is due to Liedtke
(Liedtke,1984). The second paper examined is due to Jondral (Jondral,1985). Finally, the
third paper is due to Chan and others (Chan and others,1985).

Liedtke's Classification Algorithm,

The earliest paper found was written by Liedtke in 1984. A computer simulation for
the classification of signals according to modulation is described. The classes of signals
considered for separation by the classifier are BASK, BPSK, QPSK4, 8-PSK, and BFSK.

Informational Relationships. An important aspect of electronic warfare is the jamming
of communications signals. In this case, the jammer does not need to demodulate the
underlying data of the enemy's signals. However, knowledge of the modulation type would
assist the jammer in choosing a strategy (Golden,1983:12). The relationships between the
amount of information required for signal detection, classification, and demodulation are
considered below.

Figure 2-1 shows the amount of information gained after processingversus the
amount of information required to perform the processing (Liedtke,1984:312). The figure

shows that less a priori information is required for energy detection than for demodulation.

2-1
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Figure 2-1. Informational Relationships (Liedtke,1984: 312)

However, the amount of information gained after demodulation is greater than that of energy
detection. The informational relationships for signal classification are between the cases of
demodulation and energy detection.

Energy detection requires the least amount of a priori information of the three
processes considered in the figure. The center frequency of the unknown signal must be
known only within a range determined by the bandwidth of the energy detector. However,
energy detection provides only information related to the existence of radio frequency
energy. Demodulation requires the largest amount of a priori information of the three
processes shown in Figure 2-1. This information consists of modulation type, center
frequency, bandwidth, symbol rate, and perhaps other parameters (Liedtke,1984:312).
Correspondingly, demodulation recovers the most information from the signal of the three
processes.

Classification requires less a priori information than needed for demodulation and
more than needed for energy detection; the amount of information gained by classification is
between the amounts from demodulation and energy detection. The structure of the
classifier developed by Liedtke is discussed below.
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Architecture of the Classifier. Figure 2-2 is a block diagram of the architecture of the

classification system. The unknown signal enters the system through the antenna and

‘ receiver. The receiver is used only to translate a portion of the RF spectrum to the center Y,

frequency of components used later in the processing. However, this classification method

requires an approximate value for the carrier frequency of the unknown signal. No

demodulation occurs in the receiver.

S Receiver
; '
A/D
+

Lol K P o

o

.
t

: e )
" c tricl ¢ Feature o
| IR T t— Universel Festure Analysis 3
' — Demodulstor Extraction _ﬂ end A

‘3 Filterbank

Clagsification

Figure 2-2. Architecture of Liedtke's Classification System (Liedtke,1984:313)

Zp-Toin s R ]

The output of the receiver is digitized and then filtered by a bank of FIR filters. The

bank of FIR filters consists of a number of bandpass filters with the same center frequency

but different bandwidths. The signal of interest is operated upon by all of the filters and then

the filter outputs are processed individually. According to Liedtke, the best classification

results are obtained from the output of the filter with the bandwidth that best matches the

bandwidth of the unknown signal. This filter bandwidth also provides a measure of the

keying rate of the signal. The outputs of the FIR filterbank are then input to a universal

% demodulator. 3
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@ The universal demodulator of Liedtke is a demodulator which can demodulate all of the '

signals of interest without the adjustment of parameters. A bank of demodulators is

Cm

suggested as a practical method of achieving the universal demodulator. Alternatively, one

-
-

demodulator could be operated in a time division multiplexed mode under some form of

-»
-,

<

automatic control (Liedtke,1984:313). Note that the signal has been digitized; therefore,

2. demodulation is an algorithm implemented on a computer or special purpose digital

; hardware. The universal demodulator provides inputs to the feature extraction algorithms. ,
! Feature Extraction. The feature extraction processing calculates parameters of the f
‘: unknown signal that will assist in the classification of its modulation type. The features ’
EE chosen by Liedtke are the amplitude, phase, and instantaneous frequency. The methods used

. to obtain these parameters are shown in Figure 2-3. The feature extraction process operates

:i upon the digitized signal. Liedtke determines a sufficient sample rate by experiment. When ]
:E' the sample rate was eight times the bandwidth of the filter in the FIR filterbank, good A
:.! t:., classification results were obtained. The bandwidth of this filter is approximately equal to

EE' twice the reciprocal of the keying rate. Therefore, Liedtke was operating upon signals that (
4: were digitized at a rate which provided sixteen samples per symbol. :

The feature extraction algorithm requires that the input signal be quadrature sampled.
This is represented in Figure 2-3 by the real and imaginary inputs. The real and imaginary
channels are also referred to as the inphase and quadrature components. The features that are

calculated are functions of the inphase and quadrature components. The amplitude, phase,

'
Re— 17 }~facon T L Os0
j': % Figure 2-3. Feature Extraction Algorithms (Liedtke,1984:314) '
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and instantaneous frequency are calculated in a straightforward manner. Detailed
explanations of these operations can be found in the references(Couch,1983;Schwartz,1980;
Stremler,1982). Since the features are calculated at every sample instant, a method must be
used to find the proper time to collect the ouptuts of the feature extraction.

Synchronization. The sampling instants for each feature are also calculated. This is
not the same as the clock used for digitization. These sample times are used to determine
when to extract the amplitude, phase, and frequency values from the feature extraction
algorithm.

The correct times to collect the outputs of the feature extraction circuit are calculated by
the upper signal path of Figure 2-3. Notice that outputs a, f{, and Ag are extracted based
upon the maximum detector and that the output f5 is extracted based upon the minimum
detector. Working backwards along the signal path, it is seen that the inputs to the maximum
and minimum detectors are the same signal. This signal is the square root of the sum of the
squares of high pass filtered inphase and quadrature components. The purpose of the high
pass filters is to remove the effects of modulation on the carrier.

That the amplitude and phase of the unknown signal should be measured at a
maximum of the signal envelope is apparent. Also note that f is extracted at a maximum.
The phase differencing algorithm for the output f is sampled at times determined by
minima of the signal envelope.

Feature Processing. The features extracted by the previous step are used to generate
histograms of the amplitude, frequency, and phase. This section describes the use of these
histograms as related to the separation of BPSK, QPSK, 8-PSK, BFSK, and BASK.

The histograms generated from the phase values contain the phase difference between
two sampled points as given by Ag(kt) = g(kt) - g(kt - T) and the result is called the
difference phase histogram. This was done because Liedtke has difficulty obtaining a correct

reference phase (Liedtke,1984:315). The difference phase histograms of BPSK, and QPSK

2-5

I\ ] KPR - ~ ~ 7
OGSO OBON OO s AKX O MO RN OGO MO M K 0‘.0'- A Q'n.!’n " 4

P R AR R D Rl - 200 -ata gra Aia

-

T - -

4
h

- - L.




il
i B
|'.

) . - B . R
RXINEN 0370 ATt Y Y BGOSR R A

RN N MY LU AW RTINS Y 24t et R a0 A aYs"alt Yall e it TTORAS 2.0 ¥af @il val VAV vave Ave 8va B 41 Aat b A At 8ad 8% 2 tat $2°

are shown in Figure 2-4.
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Figure 2-4. Difference Phase Histograms (Liedtke,1984:315)

The values have been modified such that all Ag values are between *180 degrees.
The histogram of BPSK has peaks at 0 and £180 degrees. The three peaks of the histogram
actually depict two phase states since a positive phase shift of 180 degrees is equivalent to a
negative phase shift of180 degrees. Similarly, the histogram of QPSK has five peaks
corresponding to the four phase states of this signal. The histogram for white gaussian noise
does not have a structured appearance. These histograms are processed in such a way as to
allow the separation of BPSK, QPSK, and PSKS.

The difference phase histograms are considered as waveforms to be processed. The
object is to use the histograms as inputs to a procedure that produces a maximal output when
the histograms are matched with the signal of interest. This structure can be viewed as a set
of matched filters for an M-ary signaling set. Figure 2-5 shows a bank of matched filters
used for optimum detection of M-ary signals. In the histogram separation problem, each

histogram is considered as one signal of the M-ary signaling set. However, this
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X % implementation could not be used by Liedtke because the impulse response of the matched k
g 0
filters are not possible to calculate (Liedtke,1984:316). This is shown by consideration of a
' two class problem corresponding to only two possible classes of unknown signals. .:
: ¢
Y
)
) 3
D) X
: .
! 3
' MF A_» ::
LA t=T
‘ MF ” Y2 :
' A1) selt) 1=T Select | DeCISOn N
¥ t I | largest
| ) !
v ] ' 1
k | ! ' t
) l-n MF h—/—-y—“.‘ :
¢ adt) T :
; LT i
[ 4
o Figure 2-5. Matched Filter Processing for M-ary Signals B
A (Cooper and McGillem,1986:221) ‘
y '
D )
: ‘
, The likelihood ratio test involved in making a two class decision is given
A by Liedtke as (Liedtke,1984:316)
‘; f(xo,xl,...,xM_IICI) 2
1xQ, X1s+ - s XM-1) = >TL (2-1) :
' f(xQ, X1, - - - XM-1! Co) g
. where ]
i 4
) «
4 f(xg, x1,...,xM-1'Cj) = conditional probability density function of histogram "
. values given class i; i =0,1 .
i & @
K] * ‘|
" X = histogram values : v
K 2-7 .
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.
()
.V
E M = number of cells in the histograms
% TL = threshold chosen to optimize some condition i
’{
\d
The problems associated with the computation of the conditional probabilty density :\
. functions are twofold; they are a function of the symbol energy to white noise energy :
¢
E density ratio and are also dependent upon the maximum value of the phase difference 3
. J
‘ histogram which is a function of the message (Liedtke,1984:317). '
nl
These problems are overcome by the use of suboptimal weighting functions that
g produce maximal values when applied to the histogram for which they are matched. E
¢ b
¥
. Weighting functions are developed for the signals considered in this paper. The weighting "
)
a
functions for BASK, BPSK, and QPSK are shown in Figure 2-6.
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: Figure 2-6. Weighting Functions for BASK, BPSK and QPSK (Liedtke,1984:316)
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:: These weighting functions do not suffer from the same problems as the optimal 9
0
weighting functions. Each weighting function has the property of producing a maximal
‘:: % value when it operates upon the phase difference histogram for which it is designed. X
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An example of feature processing for one class of signals is considered. Assuming
f @a PSK modulation was used on the unknown signal, the level of modulation is determined by
operating upon the phase difference histogram by each weighting function and choosing the

level of phase modulation corresponding to the weighting function which lead to the largest

" & -
PR e N

output. If two identical values are obtained from this process, the lower level of phase
modulation should be chosen since a BPSK signal will have a phase difference histogram \
that will produce a large result when operated upon by the QPSK and 8-PSK weighting

—t e o .- -

functions.

Actual signal classification is done by considering a series of two class problems.

-

‘.

The first test separates BPSK, QPSK, and 8-PSK from noise by the approach described

.
- -

above. The result of this test also determines the level of phase modulation.

The second test is used in the separation of BPSK from BASK and BFSK. The

3w ey

variances of the amplitude and frequency (from maximum detector) values are calculated.

-

i i-f Liedtke states that " a large amplitude variance value is indicative of BASK, and a large
@
frequency variance is indicative of BFSK." BPSK would have small values for both

amplitude and frequency variance.

-
™"

A third test is used to separate BASK and BFSK from noise. It is similar to the test

" for separating PSK from noise. The amplitude histogram of BASK contains two peaks as ‘
E: does the frequency histogram of BFSK. These histograms will contain only one peak for

b other types of modulation (Liedtke,1984:317). '
;' A review of the classification procedure reveals the five features used in the automatic ]
EE classification method. These features are the difference phase histogram, the amplitude :
i :

histogram, the frequency histogram (with the frequency values determined at a minimum

Y sampling instant), the amplitude variance, and the frequency variance (with the frequency \
‘ values determined at a maximum sampling instant).

2 Decision Functions. The five separation parameters defined above are used in decision

% functions to perform the classification of unknown signals. Liedtke uses Boolean type ]
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equations to specify decision functions. The decision function for PSK with i phase states is

by Liedtke as (Liedtke,1984:318)

[(max ( DPHI));»; >TDPHI] - [AVAR < TLAVAR] - [FVAR < TFVAR] = TRUE
(2-2)

Wi

where

(max (DPHI)) = selecting the largest value resulting from the processing ;
wj the difference phase histogram with the weighting functions
W1, W9, Wy, and wg

DPHI = result of processing a phase difference histogram with a \
weighting function :

TDPHI threshold of the phase difference histogram

b

s

: AVAR amplitude variance
0

T -

2 TLAVAR

lower threshold of amplitude variance

{or

FVAR = frequency variance <

. TFVAR = threshold of frequency variance

The dots between the square brackets symbolize the logical "AND" operation. Each

expression in brackets is evaluated as a logical binary decision. Then each bracketed term is

logically AND'ed and the result is compared to the right hand side of the expression. This

expression is interpreted as: choose PSK with i phase states if the result of processing the

difference phase histogram with weighting function i is greater than any other weighting

function j (i # j) and the amplitude variance is less than a lower threshold of the amplitude

variance, and if the frequency variance is less than a threshold of the frequency variance.

Liedtke's decision functions for BASK and BFSK are given in equations (2-3) and
(2-4) as

[AHI > TAHI] - [AVAR >TUAVAR] =TRUE 2-3)

&
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@ [FHI > TFHI] - [FVAR > TFVAR] - [AVAR <TLAVAR] = TRUE (2-4) D

where h
AHI
TAHI
TUAVAR

resnlt of processing amplitude histogram with wy ) !

oo

threshold for AHI

s
1

upper threshold of amplitude variance

-

result of processing frequency histogram with wo

Z

TFHI threshold for FHI

i A conceptualized decision space is shown in Figure 2-7. The dotted lines represent X
thresholds. Threshold values were chosen more than three standard deviations away from

) the mean values of the separation parameters. The arrows indicate the directions of

Dy increasing feature values. The results of the simulation are presented in the next section.

N Noise and
continuously
modutated
signols

A . . )
SN

Figure 2-7. Conceptualized Decision Space (Liedtke,1984:318)
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Ry %@ Results, The ability of the classification method to discriminate against noise was

tested by running 100 simulations with white gaussian noise as the only input. The classifier

never misidentified noise as a type of digital modulation. Figure 2-8 presents the results of

the classifier on the signals of interest. The probability of a correct decision by the classifier .
is represented by the symbol Py. The values of Py where estimated by running a 256

symbol length message through the simulation 25 times for each E/n(y value plotted.
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Figure 2-8. Results of Classification (Liedtke,1984:319)

W This method was also shown to perform well under conditions of practical interest; the

R\ clasifier was tested for its ability to separate signals when the center frequency of the
unknown signal was mistuned, the symbol rate was not estimated properly, and the signal

v was located between two frequency channels of similar signal strength and modulation type.

" Summary, This classification algorithm has been shown to perform well at signal to

noise ratios that are likely to be encounterd in practical situations. Liedtke presents graphs of

)
! @ the probability of correct classificaton versus E1/n, .
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Jondral's Classification Algorithm.

,; The second paper of the literature review was written by Jondral in 1985

fj (Jondral,1985). The structure of the classification algorithm used by Jondral is shown in

0

Figure 2-9. The experiment considers the following seven types of signals: BASK,

J‘ ;
;:’ BFSK, QFSK, BPSK, AM, SSB-SC, and noise. Jondral refers to AM, and SSB-SC as A3

.Q‘

Z%' and A3J. 4
&t it
1%,

8

K

¥

3

X ]
; ]
8 t
' Classification !

D i

=“l —lp . Feature !

:‘: HF - Sgnal reprocessing Extraction \ '

" f':: . ;":

2 N Adaptation | |

, S

: |
“ Figure 2-9. Structure of Jondral's Classifier (Jondral,1985:178) ¢
E“’: The preprocessing stage is functionally identical to the preprocessing of Liedtke.

4 Another similarity to the classifier of Liedtke is that the features used in this classifier are

; derived from normalized histograms of the amplitude, phase, and frequency of the signal

3 (Jondral.1985:182).

b

::‘ The similarities with Liedtke's paper end with the classification procedure. Although \
I‘ :
y the features generated by Jondral are histograms, the values from each histogram are then

9 % concatenated with each other to form a vector of 192 elements. Feature vectors for the Y
. 2-13
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@ signals of interest to Jondral are shown in Figure 2-10. The classification of unknown

signals is based upon the ability of decision functions to distinguish between these feature

vectors.

Classification. Jondral uses a two step classification process. The first step of the

- he e~

- e . -

classification procedure uses signals from known classes. Feature vectors are calculated

from these signals. These feature vectors are then used to train an adaptive classifier. The

ey v o B
Sha R iy Sy T ]

adaptation of the classifier results in coefficient vectors. The result of multiplying weight

St

vectors with feature vectors are known as decision functions. The decision functions are

shown to be weighted sums of the elements of the feature vectors (Jondral,1985: 184). The

adaptation process results in weight vectors which minimize the mean squared error between

the desired and actual outputs (Jondral, 1985: 184).

@' Figure 2-10. Feature Vectors of Jondral (Jondral,1985:185) .
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The second step in the classification process is to use the coefficient vectors together as

a matrix to multiply with feature vectors from unknown signals. The result of this

multiplication is a column vector. The elements of this column vector correspond to classes

of signals. For example, if the third element in the resultant column vector is the largest of

all the elements, the classifier of Jondral decides that the unknown signal belongs to class 3

(Jondral,1985:184).

e e e e

Experimental Results. The unknown signals used in this experiment were not !

simulated in software. Radio signals were recorded on magnetic tape under the supervision

LR

of a listener who classified the type of modulation used on each signal. The classification

given by the listener is taken to be the actual modulation used on the signal. Therefore, the

- e

- ey

result of the automatic classifier is considered correct when it is same conclusion as the

- e

human classifier (Jondral,1985:186). 3

K

The adaptation of the classifier was done on a set of learning samples. Classification 3

P

o e

was then performed on other samples to determine how well the classifier performed. The

number of learning samples during the adaptation for each signal of interest is shown in

Table 2-1. After learning was completed, the classifier was used on the test signals. The

results are presented in Table 2-2. 3

A

Summary, Jondral's approach to signal classification uses essentially the same W

-

features as Liedtke. However, Jondral uses an adaptive process to form weight vectors for

use in the pattern recognition algorithm. However, the results of the two papers can not be

directly compared because Jondral does not include performance as a function of signal to

noise ratio. Signal to noise ratios of the signals used in the classification procedure are not

known. However, all SNR's were sufficient to allow a human to perform visual or aural

L e e

: classification. Without knowledge of the SNR's, quantitative performance comparisons

@ between this classification technique and others can not be made.
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@ Chan’s Classification Algorithm,
The third paper of the literature review was written by Chan, Gadbois, and Yansouni in1985
(Chan and others,1985). A method is presented for the identification of the modulation type of an
unknown signal based upon the statistics of its envelope. The ratio of the variance of the envelope. to
the square of its mean is used as the only feature in this signal classification scheme.
Background. The feature used for separation, the ratio of the variance of the signal envelope to
the square of the mean of the signal envelope, is known as R. The use of R for modulation

identification can be understood at an intuitive level by considering a frequency modulated signal. In

Table 2-1. Number of Learning and Test Samples for each Signal

Signal Class Leamning Samples Test Samples
‘._h BASK 772 257
> BFSK 1256 418
QFSK 1109 370
BPSK 1500 500
AM-LC 1500 500
AM-SSB-SC 916 306
Noise 1500 500
Sum 8553 2851
(Jondral,1985:187)
o
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Table 2-2 Classification Results after Learning

BASK BFSK QFSK BPSK A3 A3]  Noise

P BASK 91.8 1.2 0.0 1.9 04 3.1 1.6
:: BESK 00 952 0.2 12 00 10 24 :
: QFSK 00 43 881 00 00 33 43 |
BPSK 0.0 0.0 0.0 95.8 1.8 0.0 24 :
3 A3 00 02 00 24 954 00 20
¥ A3] 33 03 10 03 03 83 115
% Noise 00 02 0.0 00 00 40 958
:’: (Jondral,1985:188)
" .
| G
;»‘5‘ frequency modulation, the information is contained in the instantaneous frequency of the
:: signal: an FM signal has a constant envelope (Stremler,1982: 279). The variance of its :
0 envelope is zero and therefore, R is equal to zero. For amplitude modulation, the
;}: information is conveyed by the envelope. Chan and others show that R approaches unity for
‘}‘: AM.
B Through the use of similar intuitive arguments, this method can be shown to be unable
:‘ to separate constant envelope signals such as FM, FSK, and PSK. However, the following f
::‘: types of amplitude modulation, SSB, DSB-SC, and DSB-LC, have been shown to "have
; very distinctive" R values (Chan and others).
3&' Architecture of Chan's Classifier. A conceptual diagram of the modulation
i‘:‘ identification method is shown in Figure 2-11. Assuming a quadrature sampled signalas in
" the methods of Liedtke and Jondral, the envelope is calculated. The feature processing then :
X @ consists of calculating the variance and mean squared value of the envelope. The ratio of the '

", o
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" @ variance to the square of the mean is then calculated. The decision function is a thresholding ’

operation which classifies signals based upon the value of the ratio calculated previously.

N ‘7

e Tm Ty e s
e

!
( )2 Mean 5
- . ecision 4
:: Receiver A/D T Function — !
B ( )2 Variance Class :
" Q Decision ;
::
i
¥
; )
\

b ‘\;\ Figure 2-11. Architecture of Chan's Classifier .
N
L
.{ Decision Functions, Chan and others calculate theoretical values of R for the 5
By’ )
& modulation types listed in the Background section. These theoretical values are compared to
o experimentally obtained values from 200 trials at two carrier to noise ratios and are displayed
K)
:; in Table 2-3. The experimental and theoretical values are within close agreement. The ‘
By {
‘: decision rules are based upon the theoretically obtained values for R are shown in Table 2-4, :
Q: The experimental data was generated with a gaussian message, gaussian noise, and )
}
;E 2048 points of bandpass signal centered at 40 kHz and sampled at 160 kHz. Table V shows
W
X the results of this classification for 200 trials of the experiment at a carrier to noise ratio of

7dB. ) 3
? Summary. This c.assification procedure has been shown to operate well at a carrier to )
g noise ratio of 7dB. This is below the threshold for FM communication (Gagliardi,1978:
0 @ 159). However, Table 2-5 shows that during 200 simulations FM was never mistaken for a
“ .
N 2-18 .
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& ‘% different type of modulation. This reliable separation of constant envelope signals from

¢

varying envelope signals at the expense of not being able to distinguish between the classes

]

E',’ of constant envelope signals.

g .
.

‘ Table 2-3. Experimental and Theoretical Values of R )
¢ :
? Type CNR Rexp Rihe Rexp Rihe \
\J

. M 7.0 0.31 0.31 0.019 0.012 .
i

0 10.4 0.16 0.16 0.0099 0.0057
L AM 7.0 0.79 0.79 0.073 0.040 2

104 0.76 0.76 0.076 0.038

2 SSB 7.0 1.00 1.00 0.080 0.054
i 10.4 1.00 1.00 0.097 0.054 h
o DSB 7.0 1.31 131 0.14 0.077 ;
i ‘:i 104 1.54 1.54 0.20 0.097 .
n (Chan and others,1985:22.5.4) ;
. 1
g Table 2-4. Decision Rule f
Y .
N '
R R Decision .
s |
D

X ]

039> R MM

O 897> R> .39 AM g
. 1105> R> .897 SSB |
K ‘
) R> 1105 DSB '
% (Chan and others,1985:22.5.4) :
) \
o )
5 &3 Assuming that the AM signal could be modulated by an antipodal + 1 bit stream, this 1
W, / 4
x:' technique can be compared quantitatively to Liedtke's technique. The above signal is .
i 2-19
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4
X identical in form to a BPSK signal. Liedtke obtains a probability of detection of unity for
& % BPSK at a CNR of 7 dB while Chan and others have a probability of detection of 0.91at a
o CNR of 7dB (Liedtke,1984: 319; Chan and others,1985:841).
i
o
t',‘
K Table 2-5. Classification Results
R
8|
. FM AM  SSB  DSB
k)
i M 200 0 0 0
N AM 0 181 19 0
t.¥
:: , SSB 0 15 160 25
Wy
& DSB 0 0 12 188
n (Chan and others,1985:22.5.4)
A
.'. M
R
R)
'3:' ‘:: The complexity of Liedtke's procedure provides better performance than the simpler
L
u method of Chan and others. However, less processing is required for the latter method. The
A0
s}: theory supporting the classification procedure of this paper is presented in the next chapter.
i
1.“_
b7
.‘
\
o
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o
P
i
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i
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Introduction, _ '
This chapter presents the theory used in the development and implementation of the :i
signal classification procedure. The classifier developed here contains some of the elements : "
from the three papers of the literature review and some new features which will be discussed -

in later sections. N

The architecture of the classifier is shown below in Figure 3-1. \

§ .
: A%
, Class &
Membership

Decision
\
!

Receiver > A/D H :;::::etion Classify 3

1 —T ]
6‘:‘ F Output Training ( X

1/
(]
Adaption ':

v

PRI RN

’ Figure 3-1. Architecture of the Classifier

The objective of the classifier is to determine the modulation type of the unknown b

signal. The classification procedure is based upon building vectors whose elements are

PR RE)

J
Y
features calculated from the signal. These vectors are considered as patterns and are input to !
v
a set of linear decision functions generated by an adaptive algorithm. The feature extraction o

and pattern classification procedures are now described.

' |

3-1 .
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] Description of Features.

% The features used in the classification of the modulation types for digitally modulated
Q signals are presented in this section. The first two features are derived from the envelope of
t the signal and the following features are obtained from spectra related to the signal.

f Features from the Signal Envelope. The mean and variance of the envelope of the

if: signal are calculated and are used as two elements of the feature vector. The remaining

b ¥

g features are derived from the spectrum of the signal and spectra of waveforms related to the
J

I

LB

signal.
N Features from the Signal Spectra. A spectral correlation technique is used for the

. extraction of the remaining features. The concept of spectral correlation is discussed below.

N Spectral Correlation, Correlation is a mathematical technique which is used to
™ determine the similiarities between functions. This technique is routinely used with time

domain signals. The approach used in this thesis is to search the spectra of unknown signals

X ‘m, for a common feature using correlation.

':‘? < The spectral feature common to all digital modulation schemes considered in this paper
'::' is that their energy is distributed in a sinc2(x) manner about the carrier frequency. The sinc
:‘s: function is defined by Couch as sinc(x) = sin(nx)/nx) (Couch, 1983:20). Therefore, a
:'i correlation of the spectra with a sinc2(x) function will result in a peak when the shift equals
’: the carrier frequency. However, the widths of the spectral lobes are functions of the symbol
i.‘ rate of the modulation. This experiment simulates only signals with a symbol rate of 2500

;:: symbols per second. Other symbol rates could be accomodated by reference functions of

.: different bandwidths.

: Four elements of the feature vector are calculated as follows. First, the spectrum of

i the unknown signal is correlated with a sinc2(x) function whose bandwidth is 5 kHz. This
:'s corresponds to signals with a symbol rate of 2500 symbols per second. Then, the results of
:: this correlation is searched for the largest two values. The maginitude of the peaks and their

@ spectral locations are saved as features.

3-2
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Next, features are calculated from the spectrum of the signal squared. This spectrum

is correlated with a narrowband sincz(x) function. The bandwidth of this sinc2(x) function

-

will be determined empirically. The resultant waveform is searched for a peak in the region

PR

of twice the intermediate frequency. The magnitude and spectral location of the largest peak

constitutes two more elements of the feature vector. A similiar procedure is used to obtain

L the next two elements of the feature vector.

g o

The spectrum of the quadrupled signal is correlated with a narrowband sinc2(x)

function. The resultant waveform is searched for a peak near four times the intermediate

frequency. The largest peak of this correlation and its location are used as the following two

elements in the feature vector. Explanations for the extraction of the above features are given

in the next section.

Physical Significance of Elements in the Feature Vector

fa

This section presents an intuitive explanation of the significance of the elements used

LS
(T

K X

to form the feature vector. First, the features derived from the envelope of the signal are

discussed.
Features from the Signal Envelope. The mean and variance of the signal envelope are

the first two elements of the feature vector. The mean of the envelope is its average value

e

b -
-

while its variance is a measure of the concentration of envelope values about the mean

(Ziemer and Tranter, 1976: 292). The envelope variance of constant envelope signals such as

M-ary PSK and M-ary FSK is theoretically zero (Chan and others,1985:22.5.2). The

variance must be other than zero if information is conveyed by the envelope, such as in any

form of AM. »
()

In the previous chapter, Chan and others have shown for certain modulation types that

R - )

the ratio of the variance of the envelope to the square of its mean can be used to classify the

@ modulation type of certain unknown signals. The division of the variance by the square of

-
P

- -
oy
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the mean serves as a normalizing procedure. This normalization provides a relative measure
of changes in the envelope with respect to its average value.

Features from the Signal Spectra, Estimates of the carrier frequency, or frequencies
as in BFSK, are obtained from the spectrum of the signal. Features useful for identification
of BPSK and QPSK are obtained from the spectra of the signal squared and quadrupled.

When the spectrum of the signal is correlated with the sinc?(x) function a waveform is
produced. The two largest peaks and their locations from the resultant waveform provide the
next four elements of the feature vector. The purpose of these features are to provide
information related to the carrier frequency, or frequencies, of the unknown signal. The
estimate of the carrier frequency is used in the following step and as a feature to indicate
BFSK. An example is presented to illustrate these principles.

The theoretical power spectral density (PSD) of a BASK signal is shown in Figure

3-2. The width of the main lobe is twice the keying rate and the main lobe is centered about

“rn)e,n

1.0 ~

0.5

1 A1
I te [——
fa—ar,

Figure 3-2. Theoretical PSD of BASK (Couch,1983:35)

the carrier frequency (Schwartz, 1980: 215). This spectrum is treated as a waveform in the
following procedure. That is, a technique commonly used in the time domain will be used in
the frequency domain. The procedure is the same as in a time domain correlation. The only

difference is that the delay variable in the spectral correlation represents a frequency shift

3.4
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@ instead of a time shift.

An optimum method for locating the sinc?(x) shapes in the signal spectra

b is desired. The processor that maximizes the peak signal to noise power ratio of a pulse in !
3 ’ ‘
i, gaussian noise is the matched filter (Cooper and McGillem, 1986: 88). In this case, the _ (
signal shape is the sinc2(x) function in the spectra of the signal. The matched filtering is :

1A
3 accomplished using correlation which is equivalent to matched filtering under certain

t

conditions (Cooper and McGillem, 1986: 90). This equivalence is shown in Figure 3-3.

K} .
o t=1y A
: ggx f Y e o 3
¥ '
¥ ‘
I\ o« g
\) .
‘: 1)+ 1)
;: LM_- LUK ("] pr——

Wf c Rt - &) + noies

o

’:s Figure 3-3. Equivalence of Matched Filter and Correlator '
i (Cooper and McGillem,1986:90) ;
: :
f'

; Recall that the objective of this portion of the feature extraction is to determine the

4

2: center frequency of the unknown signal. Therefore, the spectrum of the signal, in this case X
) 4
;: the BASK spectrum of Figure 3-2, is correlated with the reference function of the form \
n sincz(x). The baseband sincz(x) is shown in Figure 3-4. .
D 3
¥ The maximum value of the correlation will occur when the reference function is shifted ¥
! - : :
'A: such that it is aligned with the center frequency of the BASK signal. The amount of

F frequency shift to the peak of the correlation provides an estimate of the carrier frequency.

' h
:: The result of correlating the PSD of Figure 3-2 with the baseband sinc?(x) of Figure 3-4 is .
) 't
*: shown in Figure 3-5. 3
3-5 3
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Figure 3-4. Baseband sincz(x) Function used for Correlation (Couch,1983:23)
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o Figure 3-5. Result of Correlation of PSD of BASK with Baseband sinc?(x) b
0 ;
) s
l: :
{ The two largest values of the results of the correlation of the reference function with
‘l
;: the spectrum of the unknown signal are saved to provide information related to FSK !
! ' signaling. The PSD of BFSK signals is shown in Figure 3-6. The figure assumes )
frequency spacing which relults in orthogonal symbol waveforms. The result of the
)0
¢ @ correlation of the sinc?(x) with BFSK will contain two peaks due to the two peaks of the :
. 3-6
“\
)
My Y

1

3, -~ - . - - . -
SRTORURT AN M NI W XN DL I ey M OO M N MO DU ) '-'. N !!‘.’!‘ﬂ!‘ql'.‘. Dt il .‘ Phy! l.‘.! b WO b, ‘-’.0 O



M NN NUNLY WU WUNU YU WYUYU UMV RU WY URuU N

i

Spectrum of 5,(1) Spectrum of s, (/)

 en—P

AF

HEs
R AL

Spectrum of n, (1) Spectrum of a, (1)

le— R« 4
R T
N "I

B, =28

Figure 3-6. Spectrum of a BFSK Signal (Couch,1983:356)

spectrum. This is the purpose of retaining more than just one set of peak and location values

from the correlation.

Features from Spectra of Signal Raised to Powers. The preceeding steps have resulted

in features that assist in the detemination of carrier frequency or frequencies. The remaining

features to be calculated assist in the determination of the number of phase states for phase

shift keyed signals.

The following two features are based upon an idea related to carrier recovery for M-ary

PSK signals. A carrier recovery circuit for BPSK signals is shown in Figure 3-7.

The first step in the process is to raise the signal to the second power. This results in a

sinusoid at twice the carrier frequency of the input signal (Proakis, 1983:193). A bandpass

filter tuned to this frequency is used to separate other unwanted spectral components. Then a

frequency divider is used to provide a coherent reference signal at the carrier frequency
(Proakis,1983:193).
The property exploited in this feature extraction process is that BPSK signals squared

theoretically result in a sinusoid at twice the carrier frequency while others signals will have

approximately twice the bandwidth of the original signal (Gagliardi, 1978:63). Therefore, a

&
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Figure 3-7. Carrier Recovery Circuit for BPSK (Proakis,1983:194)

narrow spectral peak at twice the carrier frequency is searched for using the spectral
i; correlation technique. The presence of narrowband energy at twice the carrier frequency is a
feature indicative of BPSK signals.

A similiar approach is used for QPSK except that the input signal is raised to the fourth
power. Then, the correlation technique is used to search for narrowband energy at four
times the carrier frequency.

In the discussion concerning raising the signal to the second and fourth
powers, it has been assumed that there is sufficient signal power at the outputs of the
nonlinear devices to obtain useful features. Analyses of square law devices in the presence
of noise are presented in many texts (Cooper and McGillem,1986:118; Ziemer and
Tranter,1976:270 ; Taub and Schilling,1986: 363). However, an analysis of the signal to
noise ratio relationships of a fourth law devices is not as easily found. Appendix A provides
such an analysis. The result is similiar to that of a square law device in that there is a
threshold effect at an input signal to noise ratio of about 10 dB. Therefore, useful output is

w expected when the input SNR is above 10 dB.
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E @ This completes the discussion of the significance of the elements of the feature vector.
Each element has been shown to be related to some unique aspect of an unknown signal.

The remaining step in the process is the classification algorithm to operate uponAthe feature

vectors.

Description of Classification Algorithm

v The method used for classification involves two stages. In the first stage, weight

vectors are generated from feature vectors calculated from signals with known class

membership. The LMS algorithm is used to adaptively calculate the four weight vectors

W needed for the separation of the four classes of interest. The second stage, classification of

unknown signals, begins after the weight vectors are calculated. Feature vectors from

unknown signals are multiplied with the weight vectors. Class membership is determined by

H selecting the class corresponding to the weight vector which produces the largest ouput.

i" The LMS algorithm can be derived from a simpler algorithm, the perceptron algorithm
’::: c‘z (Lippmann,1987: 14). Therefore, the perceptron algorithm is described and then, the

;Ei. - conversion from the perceptron to the LMS algorithm is presented.

‘:3 The perceptron algorithm is an adaptive procedure whereby the algorithm modifies

’:: weight vectors to achieve optimum performance based upon the criterion of correctly

{;:: identifying all the feature vectors of the training set (Tou and Gonzalez, 1974:162).

“Eg The adaptation is also referred to as training of the classifier. The training requires

i that known inputs be applied in order that the desired outputs are known. The training is

}':: considered complete when the algorithm no longer changes the elements of the weight

}E:: vectors. The result of the perceptron algorithm are weight vectors which are used to form

)\' linear combinations of the elements in the feature vectors. The perceptron algorithm is now
:EE . discussed in greater detail.

Ei: Perceptron Algorithm. Figure 3-8 shows a model of the perceptron classifier.
& The S array represents the elements of the feature vector. The A array represents associative
" % units which perform a type of threshold logic.The perceptron algorithm uses a hard limiter as
i

"

"yt 3-9
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@‘ the function of the associative unit. Other possible functions for use in the associative units N
: are given by Lippmann and are shown in Figure 3-9. Different versions of the perceptron ",
are acheived by choosing different functions in the associative units. The LMS algorithm
may be obtained from the perceptron algorithm by a substitution of the threshold logic N
function of Figure 3-9 for the hard limiter function (Lippmann, 1987:14). 5]
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Figure 3-8. Basic Perceptron Structure (Tou and Gonzalez, 1974:160) 0
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Figure 3-9. Functions used in Associative Units (Lippmann,1987:5) ,

i

0 The optimization criterion for the LMS algorithm is the minimization of the mean squared

3 error between the actual and desired output. This is explained in greater detail in a later y

R) i .
c. section.

In Figure 3-8, the X, represent the elements of the x vector which is the feature vector !

-
-

-

to be classified. The w,, represent elements of the w vector which is a vector of weights

-
e

used to generate decision functions. The wy, are the parameters which are updated during
the training of the algorithm and ultimately are responsible for class membership decisions..
Since it has only one output node the perceptron shown in this figure can be used only for a

two class problem (Tou and Gonzalez, 1974; 161). For the multiclass problem of this

:5 thesis, this structure needs to be modified. s
l:': A muliticlass perceptron algorithm is described by Tou and Gonzalez and also by ;
: Lippmann. The modification consists of adding output nodes to the structure of Figure 3-8.

:' There is an output node for each class of feature vectors to be identified (Tou and !
) Gonzalez,1974:181). ]

The scenario for the multiclass perceptron is as follows. The M pattern classes are

;‘:,’ m assumed to be separable by M decision functions with the property that for an input vector x ::
3-11 :
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3 @ belonging to the class i (Tou and Gonzalez,1974:181)

':: d;(x) > dj(x) forallj#i (3-1
N

"

‘s

The decision functions are defined by corresponding weights. The decision function

:; . d;(k) represents the decision function for class i at the kth iteration of the training and is given

‘C

f} as (Tou and Gonzalez,1974:182)

¥

?;: dix(0)) = w; T %K) (3-2)

0:

"

i where x(k) and w;(k) are the input and weight vectors. An example of this procedure is

.'5 presented in the next section to illustrate the method by which the weights are updated by the

3‘.: process to determine the decision functions.

M

By i:h Example of Multiclass Perceptron Algorithm. This section demonstrates the use
4

:; of the multiclass perceptron algorithm. The following example is from Tou and Gonzalez !

WY

“ (Tou and Gonzalez, 1974:181-186).

)

< There are M classes of patterns to be classified and are represented as C1,Cy, . . .,

i‘ Cp- During the training, an input pattern x(k) belonging to class C; is presented at the kth

;':‘ iteration and the M decision functions are evaluated. If

3

o dilx()] > djlx(@)]  j=1,2,...,M; j=i (3-3)

X

5

i)

i then the weight vectors are not modified (Tou and Gonzalez,1974:181). This can be written

_" as (Tou and Gonzalez,1974:181) ;

8 |

y

W wik+D=wil) j=1,2,...,M (3-4)

B

by
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This corresponds to the situation when the optimum weights have been found and therefore

the training of the classifier is completed. However, if for some decision function n (Tou

and Gonzalez,1974:181)

d;[x(k)] < dp[x(k)] (3-5)

then the weights of all the decision functions must be modified or adapted. Equations used

to update the vector of weights are given as (Tou and Gonzalez, 1974:182)

wik + 1) = w;(k) + pux(k)
whk + 1) = wp (k) - ux(k)
witk + 1) = w(k) (3-6)

where | is a positive constant with a value between zero and one. This constant controls the
speed of convergence and also affects the stability of the adaptation process (Lippmann,
1987:13). These new weights are used during the next iteration of the training process. The
training is continued by applying training vectors and updating the weights until the
perceptron correctly classifies all the vectors of the training set.

Relationship betweeen the Perceptron and LMS Algorithms. This section

discusses the relationships between the perceptron and LMS algorithms and presents the
training method used with the LMS algorithm. Equations (3-5) and (3-6) are equivalent
to the hard limiter function in the associative unit shown in Figure 3-9. The weights are
updated by adding p- x(k) when there is a difference between the desired and actual
outputs. The weights are not updated when the actual output equals the desired output. In
this case, the magnitude of the difference does not affect the how the weights are updated.
As stated previously, the LMS algorithm is obtained from the perceptron algorithm by

using a linear function in the associative unit shown in Figure 3-9. The weight update

3-13
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equation is now written as (Widrow and Stearns,1985:100)

wik+1) = w;(k) + 2 e(k) x(k) 3-7

where

e = (- wTk) - x(k)

The LMS algorithm updates the weights by an amount proportional to the error bteween the
desired and actual outputs.

The training of the LMS algorithm is not as straightforward as training the perceptron.
Recall, the perceptron iteratively operated upon the training set until it correctly classifies
each training vector. The LMS algorithm is run for M trials and for a certain number of
iterations. Then, the average of cz(k) over the M trials is observed as a function of the
iteration number, k. The weights are said to have converged when e2(k) does not decrease
with increasing iteration number (Widrow and Stearns, 1985:105).

Although the LMS algorithm results from a small change to the perceptron algorithm,
it has an important advantage over the perceptron. Lippmann states that "the perceptron
convergence procedure ... may oscillate continuously when inputs are not separable and
distributions overlap." (Lippmann,1987:14). The LMS algorithm will converge in this case
and the result is the least mean squares solution (Lippmann,1987:14).

Application of LMS Algorithm, Figure 3-10 depicts the features extracted
earlier being applied to the LMS algorithm to generate errors used to update the weight
vectors. During the training portion of the classifier, the feature vectors are from signals of
known modulation type. Then the classifier calculates the actual output from each weight
vector. The initial weights are initially set equal to zero and are subsequently updated during
the adaptation. The gain constant is determined use of a formula given by Widrow and

Stearns as (Widrow and Stearns,1985:103)
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I Figure 3-10. Feature Vectors Applied to Classification Algorithm

il Q (Widrow and Stearns,1985:101)
@

vl

ot O<pu< ! (3-8)

oy (L + 1) - ( signal power)

0 where

¥, L+1

W . T
N signal power = X'X

number of elements in weight vector

W In practice, the value of Y is chosen to be an order of magnitude less than the upper limit

o given by equation (3-8) (Widrow and Stearns,1985:103).

‘:." The training consists of cyclically applying a set of known vectors from each

) @( modulation type to the classifier for a specified number of iterations. It is during this training

’ that the elements of each weight vector converge to their final values.
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g '@ After the training is completed, signals of unknown modulation types are input to the 3
§, ]
‘ classifier which then assigns them to classes based upon evaluation of the decision functions. )
' In this thesis the decision functions are evaluated in parallel. The class decision is made by f
) )
v selecting the decision function with the largest output as shown in Figure 3-11. :
)

! '
' [
: \
) T \
l: w 1 X '__—" N
:
3 T (
N W, X o :

88
\ X Select |———» Membership |
) T Largest Decision :
;v Ws X ¢
" t
. ;
! T
€‘T W, X I

“

d

1: )
v *
s \J
¢ '
: Figure 3-11. Method of Class Membership Decisions (Lippmann,1987:5) v
. ~
3 :
i ~
p Summary :
3 The theory required for an understanding of the operation of this classification

K i
' scheme has been presented. The classification begins with the calculation of features from the :
A {
4 signal. The envelope statistics provide information concerning amplitude or angle

3 modulation. The spectrum of the signal allows estimates of carrier frequency, and level of

! y
:E FSK. The spectra of the signal squared and quadrupled provide features for the
)‘ o
A determination of level of phase modulation. '
» ;
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% The classification algorithm uses an adaptive procedure which first operates upon a 's,
% 2
' set of feature vectors obtained from known classes to generate weight vectors. After the
4 weight vectors have converged, the classifier is ready to operate upon unknown signals. The 2
: ¢
: next chapter explains the procedure used to classify signals according to the theory presented ;
¥
' in this chapter. .
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g @ IV. PROCEDURE

K Introduction

E This chapter presents the procedure used during the computer simulation which

:: performs the classification process described in the preceeding chapter. First, the sample
':t rate and the observation interval of the computer generated signals are justified. Second, an

overview of the structure used for the processing is described. This overview shows the
& flow of signals from the waveform stage to feature vector stage to classification in a
'ty
i conceptual fashion.

The steps of the feature extraction process are then described. The feature extraction

:: process is presented here because feature vectors are needed to train the adaptive classifer.
A\
‘::Z The features extracted are used as elements of the feature vectors. The construction of the
B
K . . .

' ﬁ.’ feature vectors from these elements is presented. Also, the method used to train the

classifier is described. Then, the classification of signals from their feature vectors is
‘o presented.
The summary reviews the major topics of the overall classification procedure. The

processing software is referenced in the corresponding appendices.

Computer Generated Signals
:E:. The waveforms generated for this experiment are digitally modulated signals and
1.:: noise. The parameters for each type of waveforms are presented in this section.
"'a. Generation of Digitally Modulated Signals. The signals segments used in this
E experiment consist of 8192 samples with an intersample period of 1 microsecond. The
' symbol rate for all signals is 2500 symbols per second. This results in 8.192 milliseconds of
i data which corresponds to 20.48 symbols per observation interval. The need for baseband
:; %‘ sampling as opposed to bandpass sampling is discussed in a later section.

ia‘ 4'1

r’)
i
e‘\

i)
ryr

AL
. Aty L i) 3 N » . " L " 1P L T . ' : . . )
T O e A M X O AN M N MO MO MR, KN R MY e s S e M S oo LG LGRS O DT




PR TS AT T L P T LT WA S U I WL N SR PO T T TP T TR TR TS TR W WP . S i) W T I W S W W L T O O O T R O I TOR O O T OK T et §av

a Eam

W @ The center frequency for BASK, BPSK, and QPSK signals is 100 kHz. This was

selected for convenience and is not a typical intermediate frequency of a receiver. However,

ﬁ: this does not affect the performance of the classification procedure. The frequencies of the
;f} BFSK signal are 80 and 100 kHz and were again chosen for convenience. The programs

33 which generate BASK, BPSK, QPSK, and BFSK are named OOKGEN,

5 BPSK,QPSKGEN,and FSKGEN. They are listed in Appendix B.

:é Generation of Noise. The noise used in this experiment was additive white gaussian
;:-i noise which was generated by summing 50 random vectors whose elements were uniformly
] distributed over -0.5 to 0.5. The resultant vector has 8192 elements with a gaussian

:, distribution of zero mean and unity variance. The unity variance was achieved by scaling the
[:: elements. This random vector is then used as a noise waveform which is added to the

‘::i signals generated above. The desired signal to noise ratios are obtained by scaling the

i;':: amplitude of the carrier waveform to the desired values. The program which generates noise
" ‘?: is named GAUSS and is listed in Appendix B.

E‘:'.

‘,:: Structure of the Procesor

;: The signal flow through the feature extraction and classification steps are the same for 3
;E all types of signals. The structure of the processor is shown in Figures 4-1 and 4-2. The
EE nine elements of the feature vectors are obtained from the signal's envelope, the spectrum of
f:. the signal, the spectrum of the signal raised to the second power, and the spectrum of the

.": signal raised to the fourth power. Assuming the classifier has been trained and has valid

:EE weight vectors, the feature vectors are then used as inputs to the classifier which performs

::: the classification as explained in the previous chapter.
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Feature Extraction
Y The features used in this classification procedure are calculated from
four fundamental operations upon the unknown signal. One of the operations is the
calculation of the mean and variance of the envelope of the waveform. Another operation is
the searching of the spectrum of the signal for the two largest peaks. The third operation
searches the spectrum of the signal squared for peaks near twice the intermediate frequency.
The fourth operation searches the spectrum of the signal raised to the fourth power for
K peaks near four times the intermediate frequency. Each of these operations are described
‘},' below.

Features from the Envelope. The first processing function calculates the envelope of

i: the waveform. This is accomplished by the program ENVELOPE, which is listed in

;3 Appendix B. The mean and variance of the envelope are then calculated by the program

! i‘é STATS which is listed in Appendix B. The mean and variance of the envelope are the first
': two elements of the feature vectors.

:;3 Features from the Spectrum of the Signal. The next step in the processing is to

g calculate the spectra of the signal. The spectra calculated here are the result of averaging

«4 two 4096 point spectra. 1he i MHz samipie rateresults in frequency bins of 244.140625

“:\7 hertz. Rectangular windowing is used on the data and it is then passed to the FFT

'{‘ subroutine in the program SPECAVG. Rectangular windowing was chosen over any other
EE windowing since it provides the least amount of spreading of spectral energy (Rabiner and
K Gold,1975:95). SPECAVG is listed in Appendix B.

s The resultant spectra are correlated with a sincz(x) function which has a null to null

;E: bandwidth of 5 kHz. This bandwidth corresponds to the theoretical bandwidth of all the

k)

o

signals considered. Before the correlation is performed in the program SPECOR, both
spectra (the magnitude spectrum of the signal and the sinc2(x) spectrum) are normalized to

f: @ unity energy. This normalization is necessary in order for all correlation values to range
L
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from zero to unity. SPECOR is listed in Appendix B.

@ The features obtained from this stage are selected by the program BIGVALS. This
searches the result of the preceeding correlation for the two largest values. These values
and their spectral locations provide the next four elements of the feature vectors. The
search ignores points within ten points of the largest value in order for the search to ignore
large values from the same spectral lobe. BIGVALS is listed in Appendix B.

Feature from the Spectrum of the Signal Squared. The next step is to calculate the
magnitude spectrum of the signal raised to the second power. This is the step intended to
provide information related to BPSK signals. The resultant spectrum is correlated with a
sinc2(x) function of 1 kHz null to null bandwidth. Although the search is for narrowband
energy, consistent detection of energy near twice the intermediate frequency was obtained
without using a smaller bandwidth sinc2(x) function. Recall, in the previous chapter this
value was specified to be determined empirically. Satisfactory results were obtained with
this bandwidth of the reference function.

‘f.: The program which performs the correlations sets the dc portion of the spectrum to
zero prior calculating its energy which is also prior to the correlation. This is to eliminate
the response near zero hertz due to squaring and quadrupling the signal.

The result of the correlation is searched for a peak amplitude. However, in this case,
only points within a range of 100 kHz of twice the carrier frequency are considered in the g
search. The feature obtained from this procedure is the amplitude of the peak within the
search range. The spectral location was the same for all signals of the training set;
therefore, this would not provide information useful for the separation of classes. The
program which performs this search is named SVAL and is listed in Appendix B.

Features from the Spectrum of the Signal Quadrupled, The next two features are
obtained from the spectrum of the signal raised to the fourth power. This step of the
processing provides information related to QPSK signals. The spcctrum of the signal

% which has been raised to the fourth power is searched for the largest value near four times fi
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the intermediate frequency. The value of the correlation peak and its spectral location are '
@ used as the eighth and ninth elements of the feature vectors. The program which does this
search is named QVAL and is listed in Appendix B.
The need to perform the sampling as baseband and not bandpass is explained by

e e

noting that the features extracted in the above steps were dependent upon the intermediate

frequency and its second and fourth multiples. Had the signals been bandpass sampled, the

e

information related to the intermediate frequency would have been lost.
Construction of the Feature Vectors. The feature vectors consist of elements whose
values may range from on the order of unity to the order of thousands. For example, all the

peak correlation values will be less than one, while the spectral location of the correlation

e e -

peak of the signal raised to the fourth power is above 1600. This number is the FFT bin
number, not a frequency value. In order to prevent this one element from dominating the ¢
adaptation and classification procedure, all elements are scaled to range from zero to one.
t\:’x The method used in this experiment to normalize the feature vectors is now explained.
The normalization is performed over the sets of signals grouped according to SNR. In
practice, the normalization could be performed over the signals collected during one event if
off line classification were feasible. Near realtime classification would require that the
elements be scaled to values between zero and one before constructing the feature vectors. ]

The normalization operates upon the same element of each feature vector at a time.

-

The first element of each vector is searched for the highest and lowest values. For v

example, assume the highest value is a and the lowest value is b. The range is found by

e g e

subtraction to equal a - b. Then b is subtracted from each element. The result of this
subtraction is then divided by the range. This normalization provides elements between the
values of zero and one for each element of all the feature vectors.

The training of the classifier is performed by using feature vectors which are

P R <aon o

,@ calculated from signals whose class is known. The signals used for training in this

4-6

U
(}
]
i
J
t
]
>

3
\
]
]

' L 8 - - h ”, - - - h - .. L .
2, ) ‘l‘-‘,l’s.l‘- I’n‘t‘;’\’a‘l‘- \’- .- L) L.‘\ 'y Uty L )y ;J'n.l'»l.-. '-\‘l.l.u fi l‘a (W ‘u, .t. .n. 'L@o.i‘a. AR ".. .. '- ‘-.}. ':‘C‘- W ht, u".‘l";'c"‘-".‘ﬂ-‘t <.l'-|..'.



i AT, e B e e P g 8 Wy iy A gk g ¢ §4,% ¢ ¥ g A * 3,V g ¥ g R AR “ g TR TS 2 AR UK OCTORTEN) [ g TR0 WO WU

" @ experiment had 20 dB signal to noise ratios. One feature vector is calculated from each
“: class. These feature vectors are then cyclically applied to the LMS algorithm for a fixed
. number of iterations.
2': The output of the algorithm is a weight vector for each class of signal considered.
y During training, the desired response is a function of the input feature vector and the weight
b vectors used. This is illustrated in Figure 4-3. The program which uses this algorithm is
o
i named THELMS and is listed in Appendix B.
b
; T
L3 T ]j d L= 1 . 1- =3
s .S WX, Y. i 1)
R 9; = WX w_ L1 & e T 0]
o i=1 - 1
d jj
. y
; w I ..2__.é_.*
Y J= 2 - e
t X P B 2
:: i=1 i=2

Y Figure 4-3. Training Using the LMS Algorithm

) The feature vectors which have been calculated from known classes are cyclically
" applied to the algorithm. The weight vectors for each class of signals are updated during
- each iteration. The procedure is shown in Figure 4-3. The equation used to update the

weights is given in equation (4-1) as (Widrow and Stearns,1985:103)

X witk + 1) = wj(k) + 2u[d;; - y()] - x;(k) (4-1)
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class indicator for weight vectors

class indicator for feature vectors

weight vector for class i at next iteration

w;k) = weight vector for class i at present iteration

o

vl = gain constant

-

&

-~
-
-~

1; i=j

0; i#j
y(k) = wiT(k) - x;(k)
x;(k)

feature vector from class j

This algorithm is applied to the feature vectors generated from 20 dB SNR signals. The

k)
! é; convergence of the weight vectors are confirmed by running several trials with different

K numbers of iterations and different values of the gain constant. The weight vectors used in b

; this experiment are calculated from 100000 iterations of the LMS algorithm with a gain 3
constant of 0.001185. The convention for specifying class membership is that BASK,

BPSK, QPSK, and BFSK belong to class 1, class 2, class 3, and class 4.

Classification of Unknown Signals

The weight vectors calculated in the previous section are used in the classification of

unknown signals as shown in Figure 4-4. A program named THECLASS performs the
“select largest” function of the figure. THECLASS is listed in Appendix B.

The unknown signal is processed to generate a feature vector, shown in the figure as

x;. This feature vector is then multiplied with the four weight vectors. These are the weight

vectors calculated by the LMS algorithm during the training. The equations used in this

J
@ classification process may be written as ]
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Select Class
Largest ———> lMembership
Decigion

A, A
e

@ Figure 4-4. Classification Using Weight Vectors \

d=wT-x. ;

" i X 1=1234 and j=1234 (4-2)

i Class memebership is determined by selecting the class which corresponds to the weighting
| function which produces the largest output.

umm
N In this chapter, the classification process has been presented. Details of the feature
extraction, training, and classification portions have been given along with the program
i names which perform the calculations. The results of applying this procedure to the four

" classes of signals is presented in the next chapter.
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. V. RESULTS

N .

4 .

3 In ction

f;

R} This chapter presents the results of the experiment performed to classify signals

according to modulation type. The procedure used has been described in the previous
L chapter. In this chapter, the parameters used for the generation of the modulated signals are
given. Then, the feature vectors generated from these signals are presented. The next

section shows the results of using the weights obtained by the LMS algorithm to perform

R signal classification. This chapter concludes with a summary of the results of this classifier
B .

o on the signal set.

i

3

8 Signal Generation

3

N

There are five basic sets of signals used in this experiment. The first set of signals is

-
-

o

used for training the classifier and the remaining four sets are used to test the performance of

y the classifier on unknown signals. The convention for specifying class membership is that
;: BASK, BPSK, QPSK, and BFSK belong to class 1, class 2, class 3, and class 4.

Generation of Training Signals. The signals used to trained the classifier consist of

: one sample from each of the classes considered in this experiment. The SNR for this set is
20 dB. This value is obtained by scaling the amplitude of the carrier. The power of the
signal classes considered here is calculated in equation (5-1) as (Gagliardi, 1978: 19)

% P=A22 (5-1)
P where

0

i P = peak signal power

)

A = amplitude of sinusoidal carrier

R

A I I I

5-1
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i)

% Since the noise has unity variance and is zero mean, its power is equal to one. Therefore, the

SNR in dB is computed as (Gagliardi,1978:20)
SNR = 10 log( A2/2) (5-2)

Alternately, the amplitude of the carrier can be written as a function of signal to noise ratio by

rearanging equation (5-2). Doing so, we obtain
A =2172. 10 SNR/20 (5-3)

For example, to obtain a SNR of 20 dB, the amplitude of the carricr is found to be
approximately 14.14 volts. The resultant noisy waveform used in the classification

procedure is obtained by adding a file of noise points to the file of modulated data peints.

s "

® The same noise file is used to corrupt each of the waveforms in the training set.

The modulating data is 21 consecutive bits chosen from a pseudonoise sequence. The
data for BASK, BPSK, and BFSK consists of the same 21 bits. Since QPSK bauds convey
two bits per symbol as opposed to the binary modulation schemes, more data bits are
required to obtain the same observation interval as the other signal classes. Therefore, 42
bits are used, with the first 21 bits being the same as the binary modulation schemes. The
next 21 bits of the pseudonoise sequence are used to obtain the second half of the QPSK
data. Segments of the waveforms at 20 dB SNR from each class of signals are shown in
Figures 5-1 through 5-4. Featnre vectors are then calculated from these four samples of

signals as described in the previous chapter.
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; @ Generation of the Unknown Signals.

.’ The unknown signals are generated in a similiar fashion as the signals used in the
calculation of the feature vectors. The differences are that the underlying data is different
from the training set and a different noise file is used to corrupt the signals. Another set of

signals from each class is generated at 20 dB SNR. The underlying data is different than the

N training set and the noise comes from a different nose file of unity variance.

U

& . . . . .
. The next set of signals is generated in the same manner as above but the amplitude is

scaled to acheive a 15 dB SNR, the data bits are different than from the first two sets of

B, signals and a new noise file is used. The fourth set of signals is generated at a 10 dB SNR
S with new data bits and a new noise file. The fifth set of signals is generated at a 5 dB SNR

with new data bits and a new noise file.
Figures 5-5 through 5-7 show BASK and BPSK waveforms at the 15, 10, and 5 dB

SNRs considered in this experiment. These classes of signals are chosen in order to

o gk

f:‘ illustrate the effect of noise on the waveforms of amplitude and angle modulated signals.
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@ Calculation of Feature Vectors

The signals are operated upon by the feature extraction and feature vector

M e e ™ -

" oy

normalization processes described in the previous chapter. Feature vectors calculated from

the four different sets of signals are presented in Table 5-1. When these feature vectors

. Table 5-1. Feature Vectors from 20 dB SNR Signals

D Description BASK BPSK QPSK BFSK
; mean 0.00000 0.99721 1.00000 0.99400 )
; variance  1.00000 0.00126 0.00429 0.00000 ‘
$ maximum 1 1.00000 0.04105 0.66320 0.00000 !

’ location1  1.00000 0.97559 0.98782 0.00000
) maximum2  0.00000 0.19540 0.06738 1.00000 :
R locaion2  0.00000 0.88890 0.94447 1.00000 .
N squared 0.40009 1.00000 0.00000 0.31237 )
' f; quadrupled  0.00700 0.15270 1.00000 0.00000
augment 1.00000 1.00000 1.00000 1.00000 "

L e o
-,

are used to train the classifier, the weight vectors of Table 5-2 are generated.
The description columns of the tables refer to the feature extraction portion of the ’

experiment. The first and second elements in each feature vector are related to the mean and

e ]

- o

variance of the envelope. BASK has the smallest mean and largest variance. The third and

5 i i .

fourth elements are the result of the correlation of the spectrum of the signal with the sincz(x)

reference function. The elements correspond to the correlation value and offset to this value,

PP
o ae i e .

respectively. The fifth and sixth elements of the vectors are similar to the third and fourth,

except they are related to the second largest correlation value and its offset. The seventh

- -
-

element is derived from the correlation of the spectrum of the signal squared with the sinc2(x) '

-

reference function. It corresponds to the largest correlation value found near twice the )

- % intermediate frequency. The eighth element is similiar to the seventh except it is the result of

scarching the correlation of the spectrum of the signal raised to the fourth power with the

- o A Ay -

- a
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% Table 5-2.

Weight Vectors

2 Descripton ~ BASK BPSK QPSK BFSK
. mean 018255 0.12045 0.13634 0.09367
) variance 0.40205 -0.19119 -0.14394 0.15369
ij: maximum 1  0.29829 -0.36294 0.21310 0.06203
i:: location 1 0.07248 0.35930 0.10177 -0.39277
R maximum2  0.10760 -0.29654 -0.13564 0.56082

location 2 -0.15284 0.03968 0.13853 0.15205
b squared 0.01894 0.66547 -0.40747 -0.18181
quadrupled  -0.17228 -0.18061 0.51185 -0.17937
- &
:’.: augment 0.22078 -0.07073 -0.01114 0.25080
&
o
::' sinc2(x) function. The value is related to the largest correlation peak found near four times
(X)
" {:’1 the intermediate frequency. The ninth element is called the augmentation of the feature
A vectors. This constant value allows the LMS algorithm to account biases in the feature
5‘|
§§ vectors (Widrow and Stearns,1985:17).
3
o Classification Results.
I
;E: The results when the feature vectors are multiplied with the weight vectors are shown
l#
) in Table 5-3. For each class of signal, the largest result of the multiplication occurs when the
R weight vector is matched to the class of signal.
'l:'
:
R
;

'.:’. @
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Table 5-3 Classification Results

w,Tx w;Tx

T
Wy X

-0.0592 0.2167
BPSK 0.0875 0.9702 -0.1045 -0.0272 X
QPSK 0.1726 -0.0862 0.8996 -0.1609 :
-0.4222 0.1772

-0.0734 0.2521
BPSK 0.0379 0.9505 0.0014 -0.0170 ‘
" QPSK -0.0582 0.2265 0.7370 -.2281 ‘
-.1883 0.0012

-0.0302 0.1699
BPSK 0.1887 0.7744 0.1770 0.0132 )
QPSK -0.1027 -0.2071 0.6016 0.3066 '
0.2093 0.1643

i -0.1639 0.0836
A BPSK 0.0375 1.0678 -0.566 -0.1530 '
o QPSK 0.0375 0.0.0125 0.9026 -0.0579

-0.6281 0.6975

Summary

) This chapter has presented the results of a classification experiment which was

K designed to spearate four classes of signals. The modulation types considered were BASK,

-
o

BPSK, QPSK, and BFSK. A set of feature vectors were calculated for 20 dB SNR signals

‘ % from each class. These feature vectors were used for training the classifier. The LMS :
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% algorithm was used to calculate weight vectors used to classify 16 unknown signals.

The 16 signals consisted of one sample of each signal class at 20, 15, 10, and 5 dB
SNRs. Different data symbols and noise files were used in the generation of the signals at
different SNRs. The classification procedure correctly identified all 16 signals.

The final chapter of this thesis presents some conclusions about this classification

procedure and some recommendations for further study.

L.
[t
' L]
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V1. Conclusions
K @ NI

In ction
This chapter presents some of the conclusions applicable to the classification procedure

explained in the preceeding chapters. Then, some recommendations for further study are

A discussed. I

¥ Conclusion ;
b The technique presented here uses features which are calculated using conventional "
1 )
!
‘:' signal processing methods and shows favorable classification properties for the following )
' (
]

classes of signals: BASK, BPSK, QPSK, and BFSK. The amount of preprocessing

:‘ required for feature extraction is comparable to the preprocessing required by the classifiers .

;.l

b due to Liedtke and Jondral (Liedtke,1984; Jondral,1985). The number of sample points and

'y

! i«: the observation intervals are comparable between all techniques presented here. ‘
o

W ) The most interesting conclusion is that a new feature for the identification of the

[\ A

E: number of phase states of a phase shift keyed signal has been shown to provide adequate y

o information to identify BPSK and QPSK at SNRs down to 5 dB. However, the

:: conclusiveness of these results are limited due to the small number of signals used. 3

D :

4 Y

YW 8

’ Recommendations for Further Stud *

As recommendations for further study, several options should be considered. The

. purposes of the recommendations are to provide additional information about the

A performance of the classification procedure. These recommendations are presented below.

.:: Larger Set of Signals. The first recommendation is that the classifier be tested with

i hundreds of signals from each class. Different noise and data files should be used during '

‘i g
» this testing. Then, the results of the classification procedure would be more conclusive. The

;: @ researchers of the literature review use this order of magnitude of signals during performance b

;: ) testing of their classifiers. \
)
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Estimate Bandwidth of Signal. The second recommendation is that methods be
explored to estimate the bandwidth, and thereby the symbol rate, of the unknown signal.
One possible source of this information is the result of the correlation of the spectrum of the
signal with the sinc2(x) function. The bandwidth of the major peak is related to the width of
the central lobe and to the width of the sincz(x) function. Since the width of the sincz(x)
function is known, the bandwidth of the unknown signal could be calculated.

Simulated Environment. A more realistic signal environment would be another factor

to consider in order to fully test this technique. In addition to AWGN, single and multiple
interferers should be considered and their effects upon classification performance measured.
Types of inteference should include continous wave signals, nearby analog modulated
signals, and nearby digitally modulated signals. Performance of the classification procedure
as a function of the strength and frequency offset of the interferers could then be measured.
In addition, the effect of shaping the pulses used during modulation should be investigated.

Additional Modulation Types. This classification technique was tested on four classes

of signals. Bv straightforward extension of the ideas presented here, this method should be
able to classify 8-PSK and QFSK. In addition, this method could be tested for its ability to
classify minimum shift keyed (MSK) signals. MSK signaling is a form of BFSK where the
frequency separation is the smallest amount possible to obtain orthogonal signaling
waveforms (Cooper and McGillem,1986:187) Alternatively, MSK may be viewed as a
special case of QPSK (Stremler,1982:599). The phase of the MSK waveform changes by
7/2 during each symbol interval (Stremler,1982:600). Therefore, MSK may be classified as
BFSK or QPSK. The goal of this recommendation is to investigate a method which
classifies MSK not as BFSK or QPSK but as MSK. There is a possibility that ti = method

presented in this thesis may be able to perform this classific~tion.
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: @ Appendix A: Signal to Noise Ratio Analysis of Fourth Law Device

- Intr ion | '
In the "Features from Spectra of Signal Raised to Powers" section of the Theory

chapter, a signal is applied to a fourth law device. A signal to noise ratio analysis of such a

i device is presented here.

! Calculation of Signal to Noise Ratio at the Input, The input signal to the fourth law

device is represented as
N x(t) =s(t) + n(®) (A-1)

where

s(t) = waveform of modulated signal

[y o X X

‘j,:’ n(t) = narrowband gaussian noise with zero mean and variance v2

Fo L T

e
'.

The ouput signal is represented as y(t). These relationships are shown in Figure A-1. First,
the SNR at the input to the device is calculated. The signal power is given as (Gagliardi,
1978:19)

K P=A2p2 (A-2)

Since the noise is zero mean, its power is equal to its variance (Ziemer and

:: Tranter,1976:224). This is written as

N =y2 (A-3)
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Figure A-1. Signal and Noise Applied to Fourth Law Device

The signal to noise ratio at the input is now formed by dividing equation (A-2) by equation

(A-3). This results in

SNR;, = A2/2v? (A-4)

The output signal to noise ratio is calculated in the next section.

Calculation of the Signal to Noise Ratio at the Qutput. In order to calculate the output
signal to noise ratio, the power in the noise at the output of the fourth law device must be
calculated. Since the problem leading to this appendix concerns the noise power at some
frequecy other than dc, the variance will be calculated since this is equal to the ac power.
This will be done assuming a gaussian zero mean noise process with variance of v2 at the
input to the device. Let Z represent the random variable at the output of the device. Then, Z

may be written as
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&5 Z= (A-5)

The variance of Z is now calculated. Using the fundamental theorem of expectation

X (Gardner,1986:29)

N E{g(x)} =] gx) - f(x) dx (A-6)

Ep -0

& In this case g(x) represents the fourth law device and f(x) is the zero mean gaussian
probability density function with variance v2. In order to find the variance of Z, the formula
Var(Z)=E{Z? ) - E2( Z } will be used (Ziemer and Tranter,1976:224). First, E{ Z } will

% be calculated. Substituting these relationships into (A-6) gives

; E(Z ) =[1/2nv))] 2 [ n4 - exp [ -n%/2v?] dn (A7)
Since the integrand is an even function of n, equation (A-7) may be written as

R E{Z)=2 [1/2r)v2] Y2 f 04 exp [ -n22v2] dn (A-8)

B3() (]
)
B 0 ]

o 6@ Equation (A-8) is similiar to a standard form given in the CRC Standard Mathematical
w Tables as (Hodgman,1959:313)
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’ @ fxz" cexp[-ax?]dx= 1-3-5---(2n-1) (n/a)}?2 (A-9)
0 2n+1 . gfl

Inthiscasen=2anda = 1/2v2. Hence,
o | E{ Z } =2[1/Qm)]1/2- (3/8v) - (1/4v¥) - [r/(1/2v$))1/2 (A-10)
i3 After simplification,
E{Z)=E(n%} =3v* (A-11)
K In a similiar fashion, E{ Z2} is found to be
() .
| (e
0 E{Z%2)=E{n8) =105-+8 (A-12)

The variance of z is now calculated using the formula given above

o Var{ Z}=E(Z?}-E2(Z}
Y = 105v8- 98

= 96(v2)4 (A-13)

» Equation (A-13) is the variance of the random process at the output of a fourth law device
when the input is zero mean gaussian noise with a variance of v2,
A Next, the signal power at the output of the fourth law device will be calculated.

w0 5% The signal s(t) is assumed to be of the form

k¥ A-4
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s(t) = Acos(wt +9) (A-14)

R
p This signal is applied to the input of the fourth law device. The output is calculated to be
A

‘ equal to
Ky
3
R (A%/4) - [ 1+ 2coswt) + 1/2 + (1/2)cos(4wt)] (A-15)
1

¢

. For the purposes of this thesis, only the signal component at four times the carrier frequency
8 is required. This signal component is

" (A%/8) - cos(4wn) (A-16)
A
)

* ﬂ The power in this component is calculated using the formula for sinusoidal signals, as
A before. In this case
K
¢

(]

: P=(A8/64) (1/2)=A8/128 (A-17)
o
K
)
:: This is the power at the output of the fourth law device due to the signal input. Using the
"

result from the above calculation, the output signal to noise ratio is given as

N

3

g SNR, = A8/128 - 96(v2)* (A-18)
t

t

{: The input to output SNR relationship is formed by taking the ratio of the output to
o)

% input signal to noise ratios. This gives

U

Wy

:’ @ SNR/SNR;;, = [(A9)¥128 - 96(v3)* 1/ [A%2v?] (A-19)
o
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After simplification and the rearrangement of terms, (A-19) can be written as

SNR/SNR;, = (A2 /2v2)3 /768

This is equivalent to

SNR,/SNR;, = (SNR;,)3 /768

Hence, the output SNR is given in terms of the input SNR as

SNR,, = (SNR;,)* / 768
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Appendix B: Program Listings ;

s

‘ % This appendix presents the listings of the programs used to perform the operations !
decsribed in Chapter IV. The listings begin on the following page.
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. c THIS PROGRAM GENERATES OOK DATA PLUS NOISE ~
\ 1
0
! 6" !'.
2 Fetele!
PROGRAM  OOKGEN
1
i c DATE 28 ocT 1987 1
i
% BYTE PNBUF (256) ! BUFFER OF BITS OF PNCODE
> REAL CARBUF (400) ! BUFFER OF CARRIER POINTS . "
; REAL RAWBUF (400) ! BUFFER OF MODULATED CARRIER .
REAL NZBUFF (400) ! BUFFER OF NOISE POINTS
: CHARACTER*32 FNAME »
CHARACTER DUM ! DUMMY
W
h s
o C--—-  SOME USEFUL NUMBERS
L}
y PI2 = 6.283185307
i PSAMP = 1000000,
i
C--—-  ENTER FREQUENCY OF CARRIER 1
K) WRITE(6,390) :
,: 390  PORMAT(2X,’ENTER CARRIER PREQUENCY: ’,$)
. READ(6,391) PREQ 1
R 391  PORMAT(G) :
0 !
' C---  ENTER BIT RATE
, WRITE(6,15)
i 15 FORMAT (2X, 'ENTER BIT RATE: ,$) X
S READ(6, 16 ) BITRAT '
> 16 FORMAT (G) f
g 1]
s C---  CALCULATE NUMBER OF SAMPLES PER BIT ‘
4y
C: NSMPBT = 1000000 ./BITRAT
;: C-——  GET SOME FAKE BITS FROM THE PNCODE
:
I CALL PNREAD(PNBUF,NBITS)
]
%
R C——-  OPEN OUTPUT FILE
A OPEN{ UNIT = 13, :
q 9 NAME = 'OOK.DAT', :
2! 9 STATUS = ’NEW’,
Y 9 ACCESS = 'SEQUENTIAL') ’
kD) (J
:1 C-—  THIS NEXT STUPF IS FOR A MATRIXX FILE
N WRITE(13,55)
55 FORMAT('Y = [’) h
C-—--  GET SOME CARRIER POINTS TO MULTIPLY WITH THE DATA )
) .
\ OPEN (UNIT = 14, )
! 9 RAME = 'CARRIER.DAT', 5
: 9 STATUS = ‘OLD', )
9 ACCESS = 'SEQUENTIAL’)
h)
) C---  NOW OPEN NOISE "ILE, SINCE I'LL NEED IT LATER
3,
1,
) WRITE(6,134) (
0 134  PORMAT(2X'ENTER NAME OF NOISE FILE: ’,$) .
K READ(6,135)FNAME )
135  PORMAT(A)
b
OPEN (UNIT = 15,
9 NAME = PNAME, .
. 9 STATUS = 'OLD’, ¢
.‘ ‘!
X ;
h
b B-2
y
*
]
1
N J
Y, )
0’ L
(3
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A
'
H4
N *
) g
i 9 ACCESS = 'SEQUENTIAL’) '
v U
N @ READ(15,136)DUM ! DUMP MATRIXX OPENING
? ; 136 PORMAT (A}
c—— NOW DETERMINE AMPLITUDE OF CARRIER BASED UPON DESIRED SNR
§ Comme UNITY VARIANCE GAUSSIAN NOISE J
S t
B WRITE(6,707) {
: 707 PORMAT (2X, 'ENTER DESIRED SNR ( dB) : ’,$)
READ(6,708 ) SNR ; '
s 708 FORMAT(G)
K
AMP = SQRT(2. * 10.0 ** (SNR/10.) ) ’
\
& 73 FORMAT(G) \
Al ]
$ [ — MULTIPLY THE CARRIER POINTS BY THE DATA, ADD NOISE AND ;
#: c THEN WRITE TO OUTPUT FILE ;
B ICNT = 0

DO JJ = 1,KBITS ¢
. ?
X DO KK = 1,NSMPBT d
3 READ(14,73) CARBUF(KK) !
h READ(15,10) NZBUFF(XK)

i) RAWBUP (KK) = AMP * CARBUF(KK) * PNBUF(JJ) + NZBUPF(KXK)
:; WRITE(13,10) RAWBUF (KK)
END DO

o END DO i
N
'
1
i 10 FORMAT (G)
R y
5 .

$ C--~  WRITE MATRIXX EOF .
K WRITE(13,56) A
f,: 56 FORMAT(']’) Y
t s
I CLOSE(13)

CLOSE(14) s
|’ } CLOSE(15) !
' STOP
o END
" t
" J
3 !
:
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" t
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L )
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f
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THIS PROGRAM GENERATES BPSK

PROGRAM BPSK

DATE 28 OCT 1987

BYTE PNBUF (256) ! BUFFER OF BITS OF PNCODE

REAL CARBUF (400) ! BUFFER OF CARRIER POINTS
REAL RAWBUF (400) ! BUFFER OF MODULATED CARRIER

SOME USEFUL NUMBERS

PI2 = 6.283185307

FREQ = 100000.

FSAMP = 1000000.

ENTER BIT RATE

WRITE(6,15)

FORMAT( 2X, 'ENTER BIT RATE: ’,$)
READ(6,16)BITRAT

FORMAT(G)

CALCULATE NUMBER OF SAMPLES PER BIT
NSMPBT = 1000000./BITRAT

GET SOME FAKE BITS FROM THE PNCODE
CALL PNREAD(PNBUF ,NBITS)

OPEN OUTPUT FILE

OPEN( UNIT = 13,

9 NAME = ’'BPSK.DAT’,
9 STATUS = ’'NEW’,
9 ACCESS = ‘SEQUENTIAL’')

THIS NEXT STUFF IS FOR A MATRIXX FILE

WRITE(13,55)
PORMAT('Y = [’}

GET SOME CARRIEZR POINTS TO MULTIPLY WITH THE DATA

OPEN (UNIT = 14,

9 NAME = 'CARRIER.DAT’,
9 STATUS = 'OLD’,

9 ACCESS = ’SEQUENTIAL')
FORMAT (G)

NULTIPLY THE CARRIER POINTS BY THE DATA, THER WRITE TO OUTPUT FILE
BPSK FORMED BY CHANGING 1/0 DATA TO (+/-) 1 DATA

ICNT = 0
PO JJ = 1,NBITS

DO KK = 1,NSMPBT
READ(14,73) CARBUF(KK)
RAWBUP (KK) = CARBUP(KK) * ( (PNBUF(JJ)-.5} * 2.)
WRITE(13,10) RAWBUF(KK)

EWD DO

PORMAT (G)
FORMAT(2X, ' PNBUFPF IS8: ',I)

B-4
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;i: @ WRITE(13,56)
R 56 PORMAT(*}’ )
CLOSE(13)

Y STOP
£ END

4
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:,: c THIS PROGRAM GENERATES QPSK DATA PLUS NOISE

i\
o}

PROGRAM QPSKGEN

" c DATE 28 ocT 1987
K)
ot
R BYTE_ PNBUF(256) | BUFFER OF BITS OF PNCODE
% REAL- CARBUF (400) ! BUFFER OF CARRIER POINTS i
) REAL_ RAWBUF (400) ! BUFFER OF MODULATED CARRIER
i REAL NZBUFF(400) ! BUFFER OF NOISE POINTS
‘ BYTE DATBUF (128) ! BUILD QUATS FROM BINARY DATA
REAL EBUF(22) | BUFFER TO HOLD EVEN NUMBERED DATA BITS
" REAL OBUF(22) | BUFFER TO HOLD ODD NUMBERED DATA BITS
:1‘ CHARACTER*32 FNAME
.:, CHARACTER DUM ! DUMMY
!|'
-;" c— SOME USEPUL NUMBERS
l
PI2 = 6.283185307
“ FSAMP = 1000000,
LN
,:-.’ c—- ENTER FREQUENCY OF CARRIER
X
.:: WRITE(6,390)
o’ 390 FORMAT(2X, 'ENTER CARRIER FREQUENCY: ',$)
0 READ(6,391) PREQ
391 FORMAT (G)
N C—nm ENTER BIT RATE
W
N WRITE(6,15)
2 15 FORMAT(2X, 'ENTER SYMBOL RATE: ’,$)
4 READ(6,16)SYMRAT
) ] 16 FORMAT (G)
‘g Ceme CALCULATE N:™MBER OF SAMPLES PER BIT
:"
. NSMPBT = 1000000./SYMRAT
A}
,:' ) C-nn GET SOME FAKE BITS FROM THE PNCODE
|
)
s CALL PNREAD (PNBUF ,NBITS }
- c-—- OPEN OUTPUT FILE
)
a.: OPEN( UNIT = 13,
‘;. 9 NAME = 'QPSK.DAT',
'8y 9 STATUS = ’'NEW',
:::. : 9 ACCESS = 'SEQUENTIAL’)
y
- THIS NEXT STUFF IS FOR A MATRIXX FILE
" WRITE(13,55)
K 55 FORMAT('Y = [’)
W
: Com GET SOME CARRIER POINTS TO MULTIPLY WITH THE DATA
l.
H
- C—- NOW OPEN NOISE FILE, SINCE I'LL NEED IT LATER ‘
R WRITE(6,134) ’
iy 134 FORMAT (2X’ENTER NAME OF NOISE FILE: ’,$)
iy READ(6,135) PNAME
¥ 135 PORMAT (A} f
. 1
‘,' OPEN (UNIT = 15, '
¥ 9 NAME = PNAME,
s STATUS = ’OLD’,
, @ 9 ACCESS = 'SEQUENTIAL’)
&
[N ]
)
(X
L)
B
St
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'
8 L% READ(1S,136)DUM | DUMP MATRIXX OPENING !
N 136 FORMAT (A)
i
(R
c——- NOW DETERMINE AMPLITUDE OF CARRIER BASED UPON DESIRED SNR
‘ c——- UNITY VARIANCE GAUSSIAN NOISE .
t
b WRITE(6,707) :
- 707 PORMAT (2X, 'ENTER DESIRED SNR ( dB) : ’,$) !
4 READI6,708)SKR ) i
\ 708 FORMAT(G) '
o
¢ AMP = SQRT(2. * 10.0 ** (SNR/10.) ) "
x 73 FORMAT(G) '
: X
. Y +
'I
i c——- BUILD LOOK AT 2 BITS OF PNBUF TO DETERMINE HOW MUCH PHASE
i C-—-  TO ADD TO THE COSINE TO GET THE PROPER QPSK ACTION
i c—- SEPARATE EVEN AND ODD BITS '
Iy t
:5 DO KK = 1,NBITS/2 4
.‘ EBUF (KK) = PNBUF (2*KK) \
" OBUF (KK) = PNBUF(2*KK ~ 1) '
N END DO
‘ -
'
- c—- SOME USEFUL NUMBERS
& :
o PI = 3.1415926
'] DELTAT = 1./FPSAMP !
b
" c-—- DEFINE PHASE SHIFTS
Ry R
{g PHI1 = PI/4.

' PHI2 = 3.*PI/4.

Al PHI3 = 5,*PI/A4.

o: PHI4 = 7.*PI/4. ¢
) v
it Cc—- CHOOSE APPROPRIATE PHASE SHIFT

U
¥
W DO KK = 1,NBITS/2

: IF( (EBUF(KK) .EQ. 0) .AND. (OBUF(KK} .EQ. 0) ) PHI = PHIl

. 1F( (EBUF(KK) .EQ. 0) .AND. (OBUF{KK) .EQ. 1) ) PHI = PHI2 ,
ﬁ IF( (EBUP(KK) .EQ. 1) .AND. {OBUF(KK) .EQ. 0) ) PHI = PHI3 ;
) IF( (EBUF(KK) .EQ. 1) .AND. (OBUF(KK) .EQ. 1) ) PHI = PHI4 \
{
?’:‘ C--—  GENERATE COS(wt + PHIn) + NOISE AND WRITE TO OUTPUT FILE

X .
Yed DO JJ = 1,NSMPBT

‘ CARBUF (JJ) = COS(PI2*FREQ*FLOAT(JJ)*DELTAT + PHI) N

. READ(15,10) NZBUPF(JJ) X
n RAWBUF (JJ) = AMP * CARBUF(JJ) + NZBUFF(JJ)

:0 WRITE(13,10) RAWBUF(J3J)
o END DO i
N \
¥ END DO

¥

10 FORMAT (G)

v ]
]

:' C-—-  WRITE MATRIXX EOF !
1

t t
) WRITE(13,56)

" 56 PORMAT(']’)

CLOSE(13)

n CLOSE(15) §
D % X
A \
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THIS PROGRAM GENERATES FSK DATA PLUS NOISE

PROGRAM FSKGEN

DATE 28 OCT 1987

BYTE PNBUF(256) ! BUFFER OF BITS OF PNCODE
REALT CARBUF (400)

REAL_ CARBUF2(400)

REAL RAWBUF (400)

REAL NZBUFF(400)

REAL RBUF(256) | REAL BITS

CHARACTER*32 FNAME

CHARACTER DUM ! DUMMY

SOME USEFUL NUMBERS

PI2 = 6.283185307

FSAMP = 1000000.

ENTER BIT RATE

WRITE(6,15)

FORMAT(2X, 'ENTER BIT RATE: ‘,$)
READ(6,16 )BITRAT

FPORMAT (G)

CALCULATE NUMBER OF SAMPLES PER BIT
NSMPBT = 1000000./BITRAT

GET SOME FAKE BITS FROM THE PNCODE
CALL PNREAD(PNBUF ,NBITS)
WRITE(6,166)NBITS

FORMAT(2X,1)

OPEN OUTPUT FILE

OPEN( UNIT = 13,

9 NAME = 'FSK.DAT',
9 STATUS = 'NEW’,
9 ACCESS = 'SEQUENTIAL')

THIS NEXT STUFF IS POR A MATRIXX FILE

WRITE(13,55)
FPORMAT('Y = [’)

GET SOME CARRIER POINTS TO MULTIPLY WITH THE DATA

OPEN (UNIT = 14,

9 NAME = ‘CARRIER.DAT’,
9 STATUS = 'OLD’,

9 ACCESS = 'SEQUENTIAL’)
OPEN (UNIT = 24,

9 NAME = 'CARRIER2.DAT',
9 STATUS = ‘OLD’,

9 ACCESS = 'SEQUENTIAL’)

NOW OPEN NOISE FILE, SINCE I'LL NEED IT LATER
WRITE(6,134)

FORMAT(2X’'ENTER NAME OF NOISE FILE: ' $)
READ(6,135)FNAME

B-9

! BUFFER OF CARRIER POINTS

! BUFFER POR OTHER CARRIER

! BUFFER OF MODULATED CARRIER
! BUFFER OF NOISE POINTS
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FORMAT (A)

OPEN (UNIT = 15,

9 NAME = FNAME,

9 STATUS = 'OLD’,

9 ACCESS = ’'SEQUENTIAL')

READ(15,136)DUM ! DUMP MATRIXX OPENING
FORMAT (A)

- -

NOW DETERMINE AMPLITUDE OF CARRIERS BASED UPON DESIRED SNR
UNITY VARIANCE GAUSSIAN NOISE

WRITE(6,707)

FORMAT(2X, 'ENTER DESIRED SNR ( dB) : $)
READ(6,708)SNR

PORMAT (G)

AMP = SQRT(2. * 10.0 ** (SNKR/10.) )

FORMAT (G)

MULTIPLY THE CARRIER POINTS BY THE DATA, ADD NOISE

DO JJ = 1,NBITS

DO KK = 1, NSMPBT
READ(14,73) CARBUF(KK)
READ(24,73) CARBUF2(KK)
READ(15,10) NZBUPF(KK)

IF(PNBUF(JJ) .EQ. 1) THEN

RAWBUF (KK) = AMP*CARBUP(KK) + NZBUFF (KK)
ENDIF

IF(PNBUF(JJ) .EQ. 0) THEN

RAWBUF (KK) = AMP*CARBUF2(KK) + NZBUFF (KK}
ENDIF

WRITE(13,10) RAWBUF(KK)
END DO

ERD DO

FORMAT(2X,'JJ: ’,I,5X, 'KK: '+v1,10X, 'RAWBUF: ' ,G)

FORMAT (G)

WRITE MATRIXX EOF

WRITE(13,56)
PORMAT(’]’)

CLOSE(13)
CLOSE(14)
CLOSE(15)
CLOSE(24)
STOP

END
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THIS PROGRAM GENERATES GAUSSIAN NOISE OF DESIRED VARIANCE
THE ROUTINE USED TO GEMERATE SAMPLES FROM A UNIFORMLY DIST-
RIBUTED RANDOM PROCESS IS FROM WIDROW AND STEARNS.

PROGRAM GNOISE

REAL YBARBUF (8800)
REAL ACCUM(8800)
REAL_ R(8800)

REAL- NEWVAR

REAL— GAUSS (8800)
CHARACTER*32 PNAME
WRITE(6,50)

FORMAT( 2X, 'ENTER NAME OF OUTPUT FILE: ‘,$)
READ (6,51) FNAME
FORMAT (A)

OPEN(UNIT = 3,

9 NAME = PNAME,

9 STATUS = "NEW’,

9 ACCESS = ’'SEQUENTIAL’)

WRITE(3,55)
FORMAT('Y=[')

WRITE(6,60)

FORMAT ( 2X, ' ENTER DESIRED VARIANCE: ’,$)
READ(6,61) NEWVAR

FORMAT (G)

WRITE(6,52)

PORMAT (2X, 'ENTER SEED FOR RANDOM NUMBER GENERATOR: ’,$)
READ(6,53) K
FORMAT(I)

ADD S0 RANDOM VECTORS SO ELEMENTS WILL BE APPROXIMATELY GAUSSIAN
DISTRIBUTED RANDOM VARIABLES

DO JJ = 1,50
DO KK = 1,8800
R(KK) = RANDOM(K)} ~ .5
END DO
DO KK = 1,8800
ACCUM(KK) = ACCUM(KK) + R(KK)
END DO

END DO

NORMALIZE TO STANDARD NORMAL: MEAN IS NOW ZERO AND VARIANCE IS NOW 1/12
DO KK = 1,8800

YBARBUF (KK) = ACCUM(KK)/50.
END DO

NOW GET THE DESIRED VARIANCE
DO KK = 1,8800
GAUSS(XKK) = SQRT(NEWVAR) * SQRT(50.)*YBARBUF(KK)/SQRT(1./12.)
ERD DO
WRITE OUT GAUSSIAN VECTOR TO FILE
DO KK = 1,8800
WRITE(3,10)GAUSS (KK)
END DO

FORMAT (G )

8
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. WRITE(3,59)
: ngs; 59 FORMAT( "] ")
i1

CLOSE(3)

» STOP
ERD

: FUNCTION RANDOM(I)

\ .

I I =-2045*1+1 ’
' I« -(I/1048576) * 1048576

RANDOM = FLOAT(I+1)/1048577.0

RETURN

END
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THIS PROGRAM CALCULATES THE ENVELOPE OF SIGNALS BY USING THE
HILBERT TRANSFORM TO FIND THE QUADRATURE COMPONENT. THEN THE
STANDARD FORMULA OF SQRT(I**2 4+ Q**2) IS USED TO FIND THE ENVELOPE.

PROGRAM ENVELOPE

REAL BUFF(8192) | DATA READ FROM INPUT FILE

REAL RX(8192) ! REAL BUPFER FROM COMPLEX

REAL ENV(8192) 1 BUFFER TO HOLD REAL ANSWER

coMpPTEX X(8192) ! BUFFER OF COMPLEX INPUT DATA
COMPLEX POSHIL ! CONSTANT EQUAL TO ~j

COMPLEX NEGHIL ! CONSTANT EQUAL TO +j
CHARACTER*32 FNAME ! NAME OF INPUT FILE
CHARACTER*32 FNAMESS ! NAME OF OUTPUT FILE

CHARACTER DUM

POSHIL = CMPLX( 0., -1.)
NEGHIL = CMPLX( 0., 1.)

GET SIGNAL DATA

WRITE(6,1)

! DUMMY

FORMAT (2X, 'ENTER NAME OF INPUT PILE: ', $)

READ(6,2) FPNAME
FORMAT (A)

OPEN (UNIT = 3,

9 NAME = FNAME,
9 STATUS = 'OLD’,
9 ACCESS = 'SEQUENTIAL’)

DUMP MATRIXX BEGINNING

READ(3,55)DuM

FORMAT(A)

GO

DO KK = 1,8192
READ(3,10) BUPF(XK)
X(KK) = BUFF(KK)

END DO

FORMAT(G)

CLOSE INPUT PILE

CLOSE(3)

THIS PROGRAM SET UP FOR 4096 POINT DATA SEGMENT AND FFrr

N = 8192
INV = 0

CALL FPT(X,N,INV)

THIS IS THE HILBERT TRANSFORM PART

DO KK = 1,4096
X(KK) = X(KK) * POSHIL
END DO

DO KK = 4097,8192
X(KK) = X(KK) * NEGHIL
END DO

! FORWARD FFT

THAT'S THAT. NOW INVERSE TRANSFORM

INV = )

CALL PPT(X,N,INV)

INVERSE rrr



USE INPHASE AND QUADRATURE (HILBERT(X)) TO GET ENVELOPE

DO KK = 1,8192

RX(KK) = X(KK)

ENV(KK) = SQRT(BUFF(KK)**2 + RX(KK)**2)
END DO

OPEN OUTPUT FILE
WRITE(6,1001)
FORMAT(2X, 'ENTER NAME OF OUTPUT FILE: ',$)

READ(6,1002) FNAMESS
FORMAT(A)

OPEN( UNIT = 11,

9 NAME = FNAMESS,
9 STATUS = 'NEW’,
9 ACCESS = 'SEQUENTIAL’)

WRITE DATA TO OUTPUT PILE
MATRIXX OPENING STUFF

WRITE(11,3)
FORMAT(’Y = [’)

DO KK = 1,8192
WRITE(11,34) ENV(KK)

END DO

FORMAT (G)

MATRIXX STUFF

WRITE(11,35)
FORMAT(']’)

CLOSE UP AND SHUT DOWN
CLOSE(11)

STOP
END

Py
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THIS PROGRAM CALCULATES THE MEAN AND VARIANCE OF FILES

PROGRAM STATS

REAL X(8800) ! INPUT BUFFER

CHARACTER DUM

CHARACTER*32 FPNAME ! INPUT FILENAME

BYTE MAT

OPEN_INPUT FILE

WRITE(6,101)

FORMAT(2X, 'ENTER INPUT FILE: ’,$)
READ(6,102) FNAME

FORMAT (A)

WRITE(6,201)
FORMAT(2X, 'IS THIS A MATRIXX FILE {¥Y/N): ', %)
READ(6,202) MAT
FORMAT (A1)
WRITE(6,103)
FORMAT ( 2X, 'ENTER NUMBER OF DATA POINTS IN INPUT FILE: ’,$)
READ(6,104 )RPNT
FORMAT(I)
OPEN(UNIT = 3,
9 NAME = FNAME,
9 STATUS = ’'OLD',
9 ACCESS = 'SEQUENTIAL’)
NIX MATRIXX BEGINNING TO FILE IF NECESSARY
IF( MAT .EQ. ’Y') THEN
READ(3,1)DUM
ENDIF
FORMAT (A)
DO THE REAL READ
DO KK = 1,NPNT
READ(3,3) X(KK)
END DO
FORMAT (G)
CLOSE THE INPUT FrILE
CLOSE (3)
CALCULATE THE SAMPLE MEAN
SUM = 0.0
DG KK = 1,NPNT
SUM = SUM + X(KK)
END DO
SAMEAN = SUM/FLOAT(NPNT)
CALCULATE THE SAMPLE VARIANCE
SUM = 0.0
DO KK = ],NPNT
SUM = SUM + ( X(KK) - SAMEAN)*+2
END DO
SAMVAR = SUM/FLOAT (NPNT)

NOW WRITE RESULTS TO OUTPUT FILE
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c OPEN(UNIT = 4, *
c 9 NAME = ‘STATS.DAT', :c
c 9 STATUS = 'NEW’, ot
c 9 ACCESS = 'SEQUENTIAL’)
WRITE(6,5) SAMEAN, SAMVAR ™
s PORMAT (2X, SAMPLE MEAN: ',G,10X,’'SAMPLE VARIANCE: ’,G) 3y
»
c CLOSE(4) i h'
STOP .
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THIS PROGRAM CALCULATES THE SPECTRUM OF N POINTS
THIS PROCESS IS REPEATED M TIMES, AND THE M SPECTRA
ARE AVERAGED.

c
: c
, c

PROGRAM SPECAVG

X CHARACTER*32 PNAME ! FPILENAME
M REAL RX(4096) 1| BUFFER OF REAL DATA POINTS
N REAL. MAG(2048) | STORES MAGNITUDE SQUARED OF FFT RESULT
| COMPLEX X(4096) ! COMPLEX BUFFER FOR FFT SUBROUTINE
ﬁ REAL- ACCUM(4096) { ACCUMULATOR TO AVERAGE SPECTRA
'

) WRITE(6,1)
. 1 FORMAT (2X, 'ENTER FILENAME OF INPUT DATA: *,$)
s READ(6,2)FNAME
# 2 FORMAT (A)
k WRITE(6,33) PNAME
? 33 FORMAT(2X, 'FILENAME OF INPUT DATA IS: ’,A)

A
. OPEN(UNIT = 12,

9 NAME = FNAME,
& 9 STATUS = 'OLD’,
o 9 ACCESS = ’'SEQUENTIAL’)
[}
4
' WRITE(6,219)
i 219 FORMAT (2X, ' ENTER NAME OF OUTPUT FILE: ',$)
F READ (6,220 ) FNAME
220 FORMAT (A)

. 101 OPEN(UNIT = 13,

N 9 NAME = FNAME,
9 STATUS = 'NEW',

r 9 ACCESS = *SEQUENTIAL’)

X' o’
ii!! WRITE(6,3)

C
: c3 FORMAT(2X, 'ENTER NUMBER OF POINTS IN FFT: ',$)
P c READ(6,4) NPFTPT
z c4 FORMAT(I)
,.‘ NFFTPT = 4096
c WRITE(6,34)
c 34 FORMAT (2X, 'ENTER NUMBER OF SPECTRA TO CALCULATE AND AVERAGE: ’,$)
'? c READ(6,35)ITERLIM
:* c 35 FORMAT(I)
()
W ITERLIM = 2
v
L)
f . [ - NIX MATRIXX STUFF
l‘
READ(12,9)DUMMY
5{ ] PORMAT (A)
()
ﬂ C---  NOW GET ON WITH THE REAL READ
'
H ITER = 0
i' \l
s 22 ITER = ITER + 1
4 DO KK = 1,NFFTPT
X READ(12,10,ERR = 39)RX(KK)
¢ X(KK) = RX(KK)
iy END DO
?‘ 10 PORMAT (G)
\
i 19 CONTINUE
& % C—== CALL THE PFT SUBROUTINE
L ‘)‘
"
2
\.'
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INV = 0 ! IMPLIES FORWARD TRANSFORM

N = NFPTPT
CALL FPFT(X,N,INV)

NOW PIND THE MAGNITUDE SQUARED
DO KK = 1 NFFTPT/2
MAG(KK) = CABS( X(KK))**2
ERD DO
DEBUG STUFF
DO KK = 1,10
WRITE(6,335)KK,MAG(KK)
END DO
FORMAT(2X, 'MAG(',J2,’) = ',G)
NOW ACCUMULATE THE SPECTRA
DO KK = ] NFFTPT/2
ACCUM(KK) = ACCUM(KK) + MAG(KK)
END DO

IF (ITER .NE. ITERLIM)GOTO 22
IF YOU GET HERE, YOU ARE FINISHED WITH THE INPUT FILE

CLOSE(12)

NOW WRITE THIS OUT TO A FILE

MATRIXX FILE FORMAT STUrr

WRITE(13,108)
FORMAT ('Y = [')

DO KK = 1,NFPTPT/2
ACCUM(KK) = ACCUM(KK)/FLOAT(ITERLIM)
WRITE(13,21)ACCUM(KK)

END DO

FORMAT (G)

MORE MATRIXX FORMAT

WRITE(13,109)

FORMAT(']")

CLOSE (13)

STOP
END

B-18
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%ﬁ THIS FFT SUBROUTINE COMES FROM THE BOOK DISCRETE TIME SIGNALS \
e AND SYSTEMS BY AHMED AND NATARAJAN, APPENDIX 4.1

CALLING SEQUENCE

c
c
c
C"I'".‘.....'...t..'.'.Q........'.'....'..t....Q....l...il.i....'..tl'.t.
C
c
c _ CALL PPT(X,N,INV)

[of

a -

c ARGUMENTS REQUIRED FROM THE CALLING ROUTINE

c

[of X = COMPLEX VECTOR TO BE TRANSFORMED

C N - NUMBER OF POINTS TO BE TRANSFORMED

(o (MUST BE A POWER OF 2)

(o iNv -~ INV = 0 ==) FORWARD TRANSFORM

c INV = 1 m=) INVERSE TRANSFORM

c

c ARGUMENTS SUPPLIED TO THE CALLING ROUTINE :

c

c x - COMPLEX TRANSFORMED VECTOR

c NOTE THAT THE TRANSFORMED VECTOR IS RETURNED <

c IN THE ORIGINAL TIME ARRAY OF POINTS y

Ct'..'."'.&'ﬁ."'..'..'.'...‘.......'..'....“.'ﬁ...".'..."..."..iﬁ'.. Al
SUBROUTINE FFT(X,N,IKV) b
COMPLEX X(1),W,T 4
ITER = 0
IREM = N

10 IREM = IREM/2
IF (IREM .EQ. 0) GOTO 20 ;
ITER = ITER + 1 i
GOTO 10 4

20 CONTINUE :
S = -1
IF (INV .EQ. 1) § = 1
NXP2 = N

. DO 50 IT = 1,ITER
® NXP = NXP2

NXP2 = NXp/2

WPWR = 3.1415926/FLOAT(NXP2)
DO 40 M = 1,NXP2

ARG = FLOAT(M~1) *WPWR

W = CMPLX(COS(ARG),S*SIN(ARG))
DO 40 MXP = NXP,N,NXP

J1 = MXP-NXP+M

J2 = J1 + NXP2

T = X(J1)-X(J2)

u
- 3
K X(J1) = X(J1)+X(J2) )
R 40 X(32) = T'w
!.: 50 CONTINUE s
Ay N2=N/2 :
KN : Nl=nN-1
Wy J=}

DO 65 I=1,N1
IF(I .GE. J) GOTO 55
TaX(J)
X(J) = X(I)
X{I) =T
55 K=N2
60 IF(K .GE. J) GOTO 65
JnJ~-K
KmK /2
GOTO 60 )
65 IuJ4+K
IF (INV .EQ. 1) GOTO 75
DO 70 I=1,N
70 X(I) = X(I)/PLOAT(N)
75 CONTINUE
RETURN
END

Lt
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THIS PROGRAM WILL DO SPECTRAL CORRELATION OF DATA SPECTRA WITH
A SINC SQUARED PUNCITON. THE INPUT SPECTRA ARE TREATED AS WAVEFORMS

SO THE ENERGY OF EACH ARE NORMALIZED TO UNITY BEFORE THE CORRELATIONS
ARE PERFORMED

PROGRAM SPECOR

REBAL BUPF0(4096), BUFF1(4096), BUFr2(8192)
REAL_ BUFF3(4096) ,MIS

REAL SYMRAT

REAL MAXVAL

INTEGER PEAKLC

CHARACTER*32 FNAME

BYTE DUM

INPUT ACTUAL SYMBOL RATE OF DATA

WRITE(6,3000)

C 3000 FORMAT(2X, 'ENTER BASEBAND SYMBOL RATE IN HZ: ',§)

READ(6,3001)SYMRAT

C 3001 FORMAT(G)

Com=m

C 4000

C 4001

Cm—m—
Commm

{‘E‘ -

Commm

Cm—=

181

183

OO TR

SYMRAT = 500.

SOME USEFUL NUMBERS...INCLUDE FFT SIZE

WRITE(6,4000)

FORMAT (2X, 'ENTER BIN SI2E OF FPT: ',§$)
READ(6,4001)DELFRQ

PORMAT(G)

DELFRQ = 244.140625
PI2 = 2.0 * 3,1415926

NOW GENERATE THE BASEBAND SINC SQUARED
NOTE THAT THE DC COMPONENT OF THIS SINC SQUARED
IS AT BUFFER LOCATION 1024

DELTAT = 1./SYMRAT

DO JJ = 1,2048
TMP = PI2*DELTAT*DELFRQ*(FLOATJ(JJ) -1023.999)

BUFFO0(JJ) = (SIN(TMP)/TMP)**2
END DO

CALCULATE THE ENERGY IN THE BASEBAND SINC SQUARED

ESUM = 0.0

DO JJ = 1,2048
ESUM = BUFFO0(JJ)**2 4+ ESUM
ENDDO

NOW NORMAIZE SUCH THAT ENERGY OF WAVEFORM IS ONE

DO JJ = 1,2048

BUFF0(JJ) = BUPFO(JJ)/SQRT(ESUM)
ERDDO

READ IN THE DATA FILE

WRITE(6,181)

PORMAT(2X,'ENTER INPUT FILE: ’,$)
READ(6,183) FPNAME

FORMAT (A)

OPEN(UNIT = 11,

9 NAME = FNAME,

9 STATUS = ‘OLD’,

9 ACCESS = 'SEQUENTIAL’)

GET OUTPUT FILE NAME
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WRITE(6,281)
FORMAT (2X, 'ENTER OUTPUT FILENAME: ’,$)
READ{6,183)FNAME

NIX MATRIXX STUFF

READ(11,173)DUM
FORMAT(A)

DO KK = 1,2048
READ(11,177)BUFF1 (KK)

END DO

FORMAT(G)

CLOSE(11)
NIX THE DC RESPONSE BEFORE THE CORRELATIONS

BUrrl(1) = 0.
CALCULATE THE ENERGY IN THE SPECTRA WAVEFORM
ESUM = 0.
DO KK = 1,2048
ESUM = BUFF1(KK)**2 + ESUM
END DO
NOW NORMALIZE
DO KK = 1,2048
BUFF1(KK) = BUFF1(KK)/SQRT(ESUM)
END DO
TAKE CARE OF OFFSET OF BASEBAND SINC BEFORE CORRELATION
THIS IS ACCOMPLISHED BY PUSHING THE SPECTRUM OF THE BANDPASS
SIGNAL OUT 1023 POINTS

DO N = 1,3072
NOFFPSET = K - 1023
IF{ NOFFSET .LT. 1) THEN
BUFF3(N) = 0.0
ELSE
BUFF3(N) = BUFPFLl(N-1023)
ENDIF

END DO

HERE COMES THE CORRELATION

DO N = 1,2048

TEMP = 0.0 ‘
DO KK = 1,2048 ‘
SUM = BUFFO(KK)*BUFF3(KK+N-1)
TEMP = TEMP + SUM
END DO
BUFF2(N) = TEMP
END DO
NOW WRITE OUT THE OUTPUT PILE b
OPEN(UNIT = 3,
9 FILE = FNAME,
9 STATUS = 'NEW’',
9 ACCESS = 'SEQUENTIAL')

MATRIXX FILE FORMAT

WRITE(3,498)
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501

Ce==

499

C—m=

555

FORMAT('Y = [’)

DO KK = 1,2048
WRITE(3,501)BUPF2(KK)

ENDDO

FORMAT (G)

MATRIXX FILE PORMAT

WRITE(3,499)
FORMAT(')")

CLOSE OUTPUT FILE

CLOSE(3)

NOW FOR MY INFORMATION, GIVE PEAK CORRELATION VALUE AND LOCATION

DO KK = 1,2048
IF(BUFF2(KK) .GT. MAXVAL) THEN
MAXVAL = BUFF2(KK)
PEAKLC = KK
ENDIF
ENDDO
WRITE(6,555)MAXVAL, PEAKLC
PORMAT(2X, 'MAX CORR VAL IS: ’,F15.10,10X, 'PEAK LOC: ’,I)

STOP
ERD
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THIS PROGRAM DESIGNED TO BE USED WITH SPECOR FILES ONLY

AND FINDS THE TWO LARGEST NUMBERS IN THE CORRELATION AND
SAVES THEIR LOCATIONS

' -

9 L, [«
\‘ C
A !@@ [ o
)

PROGRAM BIGVALS
(9K 1
9: CHARACTER*32 FNAME , DUM
?,. BYTE MATFLG
n REAC UMAX
i REAL BMAX
ey INTEGER UMAXLOC
: INTEGER BMAXLOC
INTEGER TWIDDLE
. REAL BUFF(2048)
‘“
3
i C-——  GET ON WITH IT
W
! WRITE(6,15)
W 15  PORMAT(2X,'ENTER PILENAME: ’,$)
) READ(6,16) PNAME
16 FORMAT (A)
5"
!';
B OPEN(UNIT = 3,
A 9 NAME = PNAME,
oy 9 STATUS = 'OLD’,
0 9  ACCESS = ’'SEQUENTIAL’)
KX WRITE(6,25)
& 25 FORMAT(2X, ‘IS THIS A MATRIXX TYPE FILE [Y/N]: ’,$)
.:. READ(6,26) MATFLG
e 26 FORMAT(A)
)
:: " IF (MATFLG .EQ. ’'Y’) READ(3,26)DUM
‘ vy
6 DO XK = 1,2048
" - READ(3,20)BUFF(KK)
§ END DO
|'.
"-: C—nn GET RID OF LARGE DC RESPONSE BY NIXING LOW FREQUENCY VALUES
\
)
L8]
o UMAX = -500000.
BMAX = -500000.
-
' DO KK = 1,2048
W IF (BUPF(KK) .GT. UMAX) THEN
3 UMAX = BUPF(KK)
- 1LOC = KK
3 ENDIF
" : END DO
C—— LERO OUT POINTS MEAR THE BIGGEST POINT
]
;w: IF(ILOC .LT. 8) STOP’ MAXLOC IS REALLY SMALL’
A0
"y DO KK = ILOC-8,ILOC+8
,:o BUPF(KK) = 0.0
I\ END DO
DA
UMAX]1 = -5000.
Y DO KK = 1,2048
'f:t IP(BUPP(KK) .GT. UMAX1) THEN
$ UMAX1 = BUFP(KK)
W 110C1 = KK
‘." ENDIF
;.. END DO
)

101 PORMAT (2X, 'NUMBER OF POINTS IN FILE 1S: ',I)

s 20 FORMAT (G)
™)
W
o,
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.Q% CLOSE(3)

WRITE(6,50)UMAX, ILOC
WRITE(6,51)UMAX1, ILOC1

-

e sy 4r

PORMAT(2X, 'BIGGEST IS: ’',G,10X,'AT LOCATION: ’,I)
PORMAT( 2X, ' SECOND BIGGEST IS: ’,G,10X,’AT LOCATION: ',I)

sfop
END ™
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c THIS PROGRAM DESIGNED TO BE USED WITH SPECOR FILES ONLY
@ [ AND IT SEARCHES FOR PEAKS IN VICINTIY OF 600 TO 1000 FFT BINS
PROGRAM SVAL
CHARACTER*32 FNAME , DUM
BYTE MATFLG
REAL UMAX
REAL- BMAX
INTEGER UMAXLOC
INTEGER BMAXLOC
INTEGER TWIDDLE
REAL BUFF(2048)
C——- GET ON WITH IT

1001 WRITE(6,15)
15 FORMAT (2X, ‘ENTER FILENAME: ’,$)
READ(6,16 ,END = 9999) FNAME
16 FORMAT(A)

OPEN(UNIT = 3,

9 NAME = PNAME,

9 STATUS = ‘OLD’,

9 ACCESS = ’'SEQUENTIAL')

WRITE(6,25)

25 FORMAT(2X,’'IS THIS A MATRIXX TYPE FILE t¥/N): ',$)
READ(6,26) MATFLG

26 FORMAT(A)

IF (MATFLG .EQ. 'Y’) READ(3,26)DUM

An DO KK = 1,2048
‘ ® READ(3,20)BUFF (XK}
k END DO

UMAX = ~500000.
BMAX = -500000.
Cmm CHECK POINTS ONLY NEAR WHERE EXPECTED

DO KK = 600,1000
IF(BUFP(KK) .GT. UMAX) THEN
UMAX = BUFP(KK)
ILOC = KK
ENDIF
END DO

Com ZERO OUT POINTS NEAR THE BIGGEST POINT

DO KK = ILOC-8,ILOC+S
BUFF(KK) = 0.0
END DO

UMAX1 = -5000.
DO KK = 1,2048
IF(BUPF(KK) .GT. UMAX1) THEN
UMAX]1 = BUFF(KK)

ILOCl = KK
ENDIF

END DO
L
101 PORHAT(zx,'NUHB:R OF POINTS IN PILE IS: ', 1) 9
20 PORMAT (G) [
CLoSE(3) ]
g ‘
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WRITE(6,50)UMAX, ILOC
WRITE(6,51)UMAX]1,ILOC]1

. a_w_w_ -

FORMAT(2X, 'BIGGEST 1S: '+6,10X, AT LOCATION: ’,I)
FORMAT(2X, ' SECOND BIGGEST IS: '+G,10X,'AT LOCATION: ’,I)

GOTO 1001

STOR.
END -
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*
t c THIS PROGRAM DESIGNED TO BE USED WITH SPECOR PILES ONLY
te
t @ PROGRAM QVAL
1
]
CHARACTER*32 FNAME , DUM
. BYTE MATFLG
2 REAL UMAX
’1,. REAL BMAX
-y INTEGER UMAXLOC
iy’ INTEGER BMAXLOC
5 INTEGER TWIDDLE
ol REAL BUFF (2048)
4 C—mn GET ON WITH IT
,:c 1001  WRITE(6,15)
) 15 FORMAT ( 2X, 'ENTER PILENAME: ',$)
{;t READ(6,16 ,END = 9999) FNAME
i 16 FORMAT (A)
. OPEN(UNIT = 3,
Pt 9  NAME = FNAME,
il 9 STATUS = ‘OLD’,
' ° ACCESS = ’SEQUENTIAL')
X
Iy WRITE(6,25)
25 FORMAT (2X, 'IS THIS A MATRIXX TYPE FILE [Y/Nj: ',$)
4 READ(6,26) MATFLG
! 26 FORMAT (A)
‘i
At
,g; IF (MATFLG .EQ. ‘Y’) READ(3,26)DUM
"
K DO KK = 1,2048
»:. ! READ(3,20)BUFF (KK)
: @ END DO
"
nt
1
W UMAX = -500000.
r BMAX = -500000.
-,: C—- CHECK POINTS ONLY NEAR WHERE EXPECTED
¥
\
e DO KK = 1400,1800
IF(BUFF(KK) .GT. UMAX) THEN
vy UMAX = BUPF (KK}
1: ILOC = KK
" ENDIF
e END DO
‘:}
" . [ ZERO OUT POINTS NEAR THE BIGGEST POINT
)
DO XK = ILOC-8,ILOC+8
. BUPF(KK) = 0.0
.:n END DO
"
XN UMAX1 = -5000.
M DO KK = 1,2048
.:t IF(BUFF{(KK) .GT. UMAX1) THEN
o UMAX1 = BUFF(KK)
ILOCL = KK
ENDIF
:u" END DO
o ¢ 101 FORMAT(2X, *NUMBER OF POINTS IN FILE IS: ‘,I)
::. 20 FORMAT(G)
‘ol
b
: CLOSE(3)

Y @ WRITE(6,50)UMAX,ILOC
&,
L

. ‘ B-27
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n ; WRITE(6,51)UMAX], ILOC1 H
i' % 50 FORMAT (2X, ‘BIGGEST IS: ',G,10X,'AT LOCATION: *,I)

d
51 PORMAT(2X, ' SECOND BIGGEST IS: *+G,10X,’AT LOCATION: ',I)
GOoTO 1001

By 9999 STOP

[ END —
e'k - —:
K)

£o arme e

-
'
(- e

»‘| EQE;
.
3
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800
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73

810
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THIS PROGRAM IMPLEMENTS A MODIFIED LMS ALGORITHM BASED UPON A COM-

BINATION OF IDEAS FROM TOU AND GONZALEZ, LIPPMANN, AND TREICHLER
AND OTHERS

DATE 3 NOVEMBER 1987

PROGRAM
REAL
REAL
REAL
REAL
REAL
REAL
REAL
BYTE
BYTE

THELMS
X1(10), X2(10), Xx3(10),
wW1(10), W2(10),
wW5(10}
p1,D2,D3,D4,DS
El1,E2,E3,E4,E5
¥1,Y2,¥3,Y4,Y5
MU
AGNFLG
SKIP

GIVE FEATURE VECTORS VALUES

WRITE(6,800)

X4(10) ! PEATURE VECTORS

W3(10), W4(10) ! WEIGHT VECTORS

DESIRED OUTPUT VALUES
DESIRED MINUS ACTUAL
ACTUAL OUTPUT VALUES

P

FORMAT (2X, 'ENTER NUMBER OF ELEMENTS IN FEATURE VECTORS: ’,$)

READ(6,801)NEL

FORMAT(I)

OPEN (UNIT = 3,

9 NAME = ’QOK.FT’,

9 STATUS = 'OLD’,

9 ACCESS = 'SEQUENTIAL')

DO KK = 1,NEL
READ(3,810)X1(KK)

END DO

CLOSE(3)

OPEN (UNIT = 3,

9 NAME = 'BPSK.FT’,

9 STATUS = 'OLD’,

9 ACCESS = 'SEQUENTIAL’)

DO KK = 1,NEL
READ(3,810)X2(KK)

END DO

CLOSE(3)

OPER (UNIT = 3,

9 NAME = 'QPSK.FT’,
9 STATUS = 'OLD’,
9 ACCESS = ’'SEQUENTIAL’)

DO KK = 1,NEL
READ(3,810)X3(KK)

END DO

CLOSE(3)

OPEN (UNIT = 3,
9 NAME = 'PSK.FT’,
9 STATUS = 'OLD’,

9 ACCESS =

DO KK = 1,NEL
READ(3,810)X4(KK)

END DO
CLOSE(3)

FORMAT (G)

'SEQUENTIAL’)

INITIALIZE WEIGHT VECTORS TO ZERO

plil

- )
OO

! .t ‘..

Pt uit. V!
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Comm
1
2
Comm
93
94
Cmnn
Cmmm
10
C—m-
AW
®
-
Cmm—

5

IRITIALIZE GAIN CONSTANT

WRITE(6,1)

FORMAT (2X, 'ENTER GAIN CONSTANT: ‘,$)
READ{(6,2 MU
FORMAT(G)

ENTER NUMBER OF DESIRED ITERATIONS
WRITE(6,93)

FORMAT (2X, 'ENTER NUMBER OF ITERATIONS: ’,$)
READ(6,94)ITERLIM

FORMAT (I)

BEGIN ITERATIONS

ITER = 0

GET ITERATIONS REALTED TO INDEX OF CLASSES

ITER = ITER + 1

IVAL = IIFIX(AMOD(FLOAT(ITER),4. ))
IF (IVAL .EQ. 0) IVAL = 4

GET DESIRED OUTPUT VALUES FOR EACH ITERATION

IF (IVAL .EQ. 1) THEN
Dl =

o

w
kAN
(- - - g

IF (IVAL .EQ. 2) THEN
plL = 0.
D2 = 1.
D3 = 0.
D4 = 0.
ENDIF

IF (IVAL .EQ. 3) THEN
Dl = 0.
D2 = 0.
D3 = 1.
D4 = 0.
ENDIF

IF (IVAL .EQ. 4) THEN
Dl = 0.
D2 = 0.
D3 = 0.
D4 = 1.
ENDIF

CALCULATE ACTUAL OUTPUT VALUES FOR EACH SET OF WEIGHTS

1
Y2
73
4

o0o0o0o

IF (IVAL .EQ. 1) THEN
DO KK = 1,NEL
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¥l = W1(KK) * X1(KK) + ¥l
Y2 = W2(KK) * X1(KK) + Y2
¥3 = W3(KK) * X1(KK) + Y3
T4 = WA(KK) * X1(KK) + ¥4
ENDDO
ENDIF
IF (IVAL .EQ. 2) THEN
DO KK = 1,NEL
ST Y1 = WI(KK) * X2(KK) + Y1
T Y2 = W2(KK) * X2(KK) + Y2
¥3 = W3(KK) * X2(KK) + ¥3
Y4 = Wi(KK) * X2(KK) + Y4
ENDDO
ENDIF

IF (IVAL .EQ. 3) THEN
DO KK = 1,NEL
Y1l = WI(KK) * X3(KK) + y1
T2 = W2(KK) * X3I(XK) + Y2
¥3 = WI(KK) * XI(KK) + Y3
¥4 = WA(KK) * X3 (KK) + Y4

IF (IVAL .EQ. 4) THEN
DO XX = 1 ,NEL
Y1 = W1(KK) * X4(KK) + Y1
Y2 = W2(KK) * X4(KK) + Y2
¥3 = WI(KK) * X4(KK) + ¥3
Y4 = W4(KK) * X4(KK) + Y4

Co-= CALCULATE ERRORS

El = D1 - Y1
E2 = D2 - Y2
E3 = p3 ~ Y3
B4 = D4 - Y4

Conm NOW DO THE UPDATES OF THE WEIGHT VECTORS

IF(IVAL .EQ. 1) THEN
DO KK = 1,NEL

W1(KK) = W1(KK) + MU * E1 * X1(KK)
W2(KK) = W2(KK) + MU * E2 * X1(KK)
W3(KK) = W3I(KK) + MU * g3 + X1({KK)
W4(KK) = WE(KK) + MU * E4 * X1(KK)
ENDDO
ENDIP
IF(IVAL .EQ. 2) THEN
DO KK = 1,NEL
W1({KK) = W1(KK) + MU * E] » X2 (KK)
W2(KK) = W2(KK) + MU * g2 + X2 (KK)
WI(KK) = W3(KK) + MU * £3 * X2(KK)
WA(KK) = WE(KK) + MU * E4 * X2(KK)
ENDDO
ENDIF
IF(IVAL .EQ. 3) THEN
DO KK = 1,NEL
Wi(KK) = WI(KK) + MU * E1 * X3(KK)
W2(KK) = W2(KK) 4+ MU * B2 * X3(KK)
W3I(KK) = W3I(KK) + MU * E3 » X3(KK)
WA(KK) = WA(KK) + MU * E4 * X3(KK)
ENDDO
ENDIF

IP(IVAL .EQ. 4) THEN
DO KK = 1 ,NEL
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) W1{KK) = W1(KK) + MU * E]l * X4{KK)

;-' ‘,;_V{. W2(KK) = W2(KK) + MU * E2 * X4(KK) v
" c‘i.'} W3(KK) = W3(KK) + MU * E3 * x4 (KK) y
o v R WA(KK) = W4(KK) + MU * B4 * X4(KK)

ENDDO

. ENDIP )
" !
) ,
o: c——- CHECK TO SEE IF YOU'RE DONE )
3 - -

,:, IF +ITER .EQ. ITERLIM) GOTO 999
0

+ GOTO 10

.“ c——- YOU'RE DONE. WRITE OUT FINAL WEIGHTS

(l

) 999  WRITE(6,100)ITER

:‘ TYPE n'v . 3
b

I DO KK = 1,NEL

WRITE(6,191) WI(KK), W2(KK), W3(KK),Wd(KK) -

o END DO )
0
4 191  FORMAT( 4(2X,G,3X))
N

Q'| TYPE *,’ ' ¢
g

K 100 FORMAT (2X, ' ITERATION: ,17)

102 FORMAT ( 5(2X,Fl14.7,5X))
Coew AGAIN?
R/
a:. WRITE(6,133) t
2 133 FORMAT (2X, 'AGAIN? (Y/N]: ',$) t
W READ(6,144)AGNFLG
b o 144 FORMAT(AL)
‘:: IF (AGNPLG .EQ. ‘N’) GOTO 1001

X

z: GOTO 73

P

Ky 1001 OPEN(UNIT = 23,

) 9 NAME = 'WEIGHTS.LMsS',
d 9 STATUS = 'NEW’,

s 9 ACCESS = 'SEQUENTIAL’)
i DO KK = 1,NEL ;
Y WRITE(23,191)W1(KK),W2(KK), W3(KK), W4(KK)

g END DO

l"

|,: WRITE(23,761)ITERLIM,MU

) : 761 FORMAT(I,10X,G)
b CLOSE(23)

s sTOP
¢ END

a.

"I

¢

s
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B 734

h 735

750

751

L

[

i 5595
‘ 881

? 882
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THIS PROGRAM USES THE OUTPUT OF THE LMS ALGORITHM TO
CLASSIFY FEATURE VECTORS

PROGRAM THECLASS

REAL X1(9)

REAL wi(9), w2(9), W3(9),W4a(9) ,W5(9)
REAL SUM(5)

REAL MAXVAL

B¥TE AGN

CHARACTER*32 FNAME

GET WEIGHT VECTORS FROM FILES

WRITE(6,734)

FORMAT (2X, 'ENTER NUMBER OF ELEMENTS IN PEATURE VECTORS: ’,$)
READ(6,735)NEL
FORMAT(1)

WRITE(6,750)

FORMAT(2X, 'ENTER NAME OF FILE OF WEIGHTS: ’,$)
READ(6,751) FNAME

FORMAT (A)

OPEN(UNIT = 3,

9 NAME = FNAME,
9 STATUS = 'OLD’,
9 ACCESS = 'SEQUENTIAL’)

DO KK = 1,NEL

READ(3,1)W1(KK),W2(KK) ,W3(KK) ,W4(KK)
END DO

CLOSE (3)
FORMAT( 4(2X,G,3X))

PO KK = 1,NEL

WRITE(6,1)W1(KK), W2(KK), WI(KK), W4(KK)
END DO

INPUT UNKNOWN DATA VECTOR

WRITE(6,881)

FORMAT (2X, 'ENTER FILENAME OF UNKNOWN FEATURE VECTOR: ’‘,$)
READ(6,882) FNAME

FORMAT (A)

OPEN(UNIT= 3,

9 NAME = PNAME,

9 STATUS = 'OLD’,

9 ACCESS = 'SEQUENTIAL')

DO KK = 1,NEL
READ(3,2)X1(KK)
END DO

FORMAT(G)
DO KK = 1,NEL
WRITE(6,2)X1(KK)
ERD DO
DO KK = 1,4
SUM(KK) = 0.0
ENDDO

DO KK = 1,NEL

SUM(1l) = W1(KK) * X1(KK) + SUM(1)
SUM(2) = W2(KK) * X1(KK) + SUM(2)
SUM(3) = W3I(KK) * X1(KK) + BUM(3)
SUM(4) = W4(KK) * X1(KK) + SUM(4)
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1999

Cmmm

S0

51

99
1998

END DO

FIND LARGEST ELEMENT IN SUM VECTOR
MAXVAL = -100000.

DO KK = 1,4
IF(SUM(KK) .GT. MAXVAL) THEN
—~ MAXVAL = SUM(KK)
= - IND = KK
ENDIF
ENDDO

WRITE RESULTS

WRITE(6,5)IND,SUM(IND)

FORMAT ( 2X, ' UNKNOWN BELONGS TO CLASS ’,Il1,10X, ’'SUM IS:

TYPE *,’ *
TYPE *,’ ¢

WRITE(6,1999)SUM(1),SUM(2),SUM(3),5Un{4)
FORMAT( 4(2X,G,3X))

DO YOU WANT TO INPUT ANOTHER UNKNOWN VECTOR?

WRITE (6,50)
FORMAT (2X, 'AGAIN? [Y/N]): ’,$)
READ(6,51)AGN

FORMAT(Al)

IF(AGN .EQ. 'N’) THEN
GOTO 99

ELSE
GOTO 5595

ENDIF

WRITE(6,1998)
FORMAT(2X,’'SUM1’,15X,'SUM2’,15X,'SUM3’,15X, ’SUM4"’)

TYPE *,' '

STOP
END
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Mr. Martin P. DeSimio was bom on 3 April 1960 in Burbank, California. He
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g graduated from high school in Fairborn, Ohio in 1978 and then attended Wright State .
) University in Dayton, Ohio. He graduated with the degree of Systems Engineer, Electrical !
Y Option in June 1983. Then, he accepted a position with the Foreign Technology Division at '
« Wright-Patterson Air Force Base, Ohio as an Electronics Engineer in the Directorate of
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i Sensor Data. He entered the School of Engineering, Air Force Institute of Technology, in A
| June 1986. '
: :
‘! 0
" LA
By i
[} o
3 |
P t
. ]

B

N Permanent address: 4770 Appaloosa Trail :
. Fairborn, OH 453249700 '
" ;
3 )
! :
: ]
[/ .
L K \
)

.

e.

§ . \J
‘ \
i“

5 g
o '
@ :
J
' ]
' V-1 t
A

5

. . , _ e e e e - . _
N L A N e R s S S s M A S S T I A S 308 A T A 8 L T O D N T, T T NN M




..".’-’.:l,"n,‘-!’.'ﬂ.‘;‘2‘4".‘“;“.&;‘."':‘1‘ DU LA LS AN RO R A TR RRR
( 8 ; . . \/
8,800 00 ¢ 80.0"0, 9 0.0 0,8 1,1 0,8 0,0°0 ¢ c,o'!.

T

‘
4

i

VPR SR XN
. o )

AL % e el S el q w
At et T A e T L I I i u ¥ ool
" e P e " . . . .

SO KA NOMN M Yo KM P N B O M :‘v v .'u".lo'.h'!ln WX .l| o M *" 2 - (T, "0!



